Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, t...Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.展开更多
Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable ...Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable surface chemistry.In this work,an industrial melt-blown strategy that utilized commercially available polypropylene(PP)was used for the large-scale fabrication of superhydrophobic/superoleophilic membranes with staggered fabric structures.These membranes could readily separate different oils including pump oil and crude oil from various aqueous solutions such as strongly acidic,alkaline,and saline media.In addition,the separation efficiencies of these membranes exceeded 99%,and they could remain functional even after exposure to corrosive media.We anticipate that this work will further the design of membranes and enhance their applicability in oil-water separation,and provide researchers and engineers with a more effective tool for performing challenging separations and mitigating pollution.展开更多
基金the financial support provided by the National Natural Science Foundation of China (21808044)。
文摘Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.
基金the National Natural Science Foundations of China(Nos.21878059,21878058,21808044)the Science and Technology Project of Guangdong Province(2017A050501040)the Science and Technology Project of the Guangzhou Education Bureau(201831830,201831825)for sponsoring this research。
文摘Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable surface chemistry.In this work,an industrial melt-blown strategy that utilized commercially available polypropylene(PP)was used for the large-scale fabrication of superhydrophobic/superoleophilic membranes with staggered fabric structures.These membranes could readily separate different oils including pump oil and crude oil from various aqueous solutions such as strongly acidic,alkaline,and saline media.In addition,the separation efficiencies of these membranes exceeded 99%,and they could remain functional even after exposure to corrosive media.We anticipate that this work will further the design of membranes and enhance their applicability in oil-water separation,and provide researchers and engineers with a more effective tool for performing challenging separations and mitigating pollution.