In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element...In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element method (FEM). In this work, the FEM is used to model a mandibular fracture (using an inhomogeneous and orthotropic jaw model) simulating the effect of different bite tasks/forces on the stability of the fixated fracture. Specifically, bilateral and unilateral clenches (using muscle data) were studied using a low-profile 3D 4 × 2 hole mini-plate deployed for fracture fixation. Here, the mandible bone was treated as orthotropic and spatially inhomogeneous. Although the results of stress and displacement analyses, for this fixation hardware, indicate sufficient fixation under normal biting conditions, the results show that the unilateral and ipsilateral bites develop, in general, the highest stresses or displacements. Such results can guide post-surgery recommendation on bite behavior.展开更多
Simulation of dislocation dynamics opens the opportunity for researchers and scientists to observe in-depth many plastic deformation phenomena. In 2D or 3D media, modeling of physical boundary conditions accurately is...Simulation of dislocation dynamics opens the opportunity for researchers and scientists to observe in-depth many plastic deformation phenomena. In 2D or 3D media, modeling of physical boundary conditions accurately is one of the keys to the success of dislocation dynamics (DD) simulations. The scope of analytical solutions is restricted and applies to specific configurations only. But in dynamics simulations, the dislocations’ shape and orientation change over time thus limiting the use of analytical solutions. The authors of this article present a mesh-based generalized numerical approach based on the collocation point method. The method is applicable to any number of dislocations of any shape/orientation and to different computational domain shapes. Several verifications of the method are provided and successful implementation of the method in 3D DD simulations have been incorporated. Also, the effect of free surfaces on the Peach-Koehler force has been computed. Lastly, the effect of free surfaces on the flow stress of the material has been studied. The results clearly showed a higher force with increased closeness to the free surface and with increased dislocation segment length. The simulations’ results also show a softening effect on the flow stress results due to the effect of the free surfaces.展开更多
文摘In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element method (FEM). In this work, the FEM is used to model a mandibular fracture (using an inhomogeneous and orthotropic jaw model) simulating the effect of different bite tasks/forces on the stability of the fixated fracture. Specifically, bilateral and unilateral clenches (using muscle data) were studied using a low-profile 3D 4 × 2 hole mini-plate deployed for fracture fixation. Here, the mandible bone was treated as orthotropic and spatially inhomogeneous. Although the results of stress and displacement analyses, for this fixation hardware, indicate sufficient fixation under normal biting conditions, the results show that the unilateral and ipsilateral bites develop, in general, the highest stresses or displacements. Such results can guide post-surgery recommendation on bite behavior.
文摘Simulation of dislocation dynamics opens the opportunity for researchers and scientists to observe in-depth many plastic deformation phenomena. In 2D or 3D media, modeling of physical boundary conditions accurately is one of the keys to the success of dislocation dynamics (DD) simulations. The scope of analytical solutions is restricted and applies to specific configurations only. But in dynamics simulations, the dislocations’ shape and orientation change over time thus limiting the use of analytical solutions. The authors of this article present a mesh-based generalized numerical approach based on the collocation point method. The method is applicable to any number of dislocations of any shape/orientation and to different computational domain shapes. Several verifications of the method are provided and successful implementation of the method in 3D DD simulations have been incorporated. Also, the effect of free surfaces on the Peach-Koehler force has been computed. Lastly, the effect of free surfaces on the flow stress of the material has been studied. The results clearly showed a higher force with increased closeness to the free surface and with increased dislocation segment length. The simulations’ results also show a softening effect on the flow stress results due to the effect of the free surfaces.