期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Natural rubber latex as a potential additive for water-based drilling fluids
1
作者 Jun Yang Guan-Cheng Jiang +4 位作者 Jing-Tian Yi Yin-Bo He Li-Li Yang teng-fei dong Guo-Shuai Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2677-2687,共11页
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ... The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF. 展开更多
关键词 Natural materials Water-based drilling fluids Natural rubber latex Bentonite suspensions Filtration loss
下载PDF
Subsection and superposition method for reservoir formation damage evaluation of complex-structure wells 被引量:1
2
作者 Guan-Cheng Jiang Yi-Zheng Li +3 位作者 Yin-Bo He teng-fei dong Ke-Ming Sheng Zhe Sun 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1843-1856,共14页
Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of re... Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system. 展开更多
关键词 Complex-structure wells Reservoir formation damage Reservoir anisotropy Skin factor Production prediction model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部