Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ...Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.展开更多
基金supported by the National Research Council of Thailand(NRCT)(Nos.N42A650237 and N41A661163)the National Science,Research and Innovation Fund(NSRF)via the Fundamental Fund of Khon Kaen Universitythe NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(No.B37G660011).
文摘Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.