期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
1
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi thomas webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Influence of Halide Choice on Formation of Low-Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells
2
作者 Xueping Liu thomas webb +18 位作者 Linjie Dai Kangyu Ji Joel A.Smith Rachel C.Kilbride Mozhgan Yavari Jinxin Bi Aobo Ren Yuanyuan Huang Zhuo Wang Yonglong Shen Guosheng Shao Stephen J.Sweeney Steven Hinder Hui Li David G.Lidzey Samuel D.Stranks Neil C.Greenham S.Ravi P.Silva Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期670-682,共13页
Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on th... Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability. 展开更多
关键词 carrier dynamics halide anions(I Br Cl) neo-pentylammonium halides perovskite solar cells quasi-2D/3D heterojunction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部