为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人...为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险.展开更多
文摘为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险.