Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental compositi...Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.展开更多
Intraductal papillary neoplasm of the bile duct(IPNB)is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas.These lesions have been recognized as one of the three major precancer...Intraductal papillary neoplasm of the bile duct(IPNB)is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas.These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010.In 2018,Japanese and Korean pathologists reached a consensus,classifying IPNBs into type l and type 2 IPNBs.IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis.From a molecular genetic perspective,IPNBs exhibit early genetic variations,and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs.The histological subtypes of IPNBs include gastric,intestinal,pancreaticobiliary,or oncocytic subtypes,but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin.Due to the rarity of these lesions and the absence of specific clinical and laboratory features,imaging is crucial for the preoperative diagnosis of IPNB,with local bile duct dilation and growth along the bile ducts being the main imaging features.Surgical resection remains the optimal treatment for IPNBs,but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.展开更多
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be class...We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.展开更多
The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis an...The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response(LTR)on the timing analysis from three aspects:the power spectral density,the pulse profile and the time lag.After the LTR,the value of power spectral density monotonously decreases with the increasing frequency.The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz.The corresponding frequency for quasi-periodic oscillation(QPO)signals is 458 Hz.The root mean square(RMS)of QPOs holds a similar behaviour.After the LTR,the centroid frequency and full width at half maxima(FWHM)of QPOs signals do not change.The LTR reduces the RMS of pulse profiles and shifts the pulse phase.In the time domain,the LTR only reduces the peak value of the cross-correlation function while it does not change the peak position;thus it will not affect the result of the time lag.When considering the time lag obtained from two instruments and one among them is LE,a 1.18 ms lag is expected caused by the LTR.The time lag calculated in the frequency domain is the same as that in the time domain.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.12035017)Youth Innovation Promotion Association CAS(No.2023014)Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515010360 and 2022B1515120032).
文摘Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.
文摘Intraductal papillary neoplasm of the bile duct(IPNB)is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas.These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010.In 2018,Japanese and Korean pathologists reached a consensus,classifying IPNBs into type l and type 2 IPNBs.IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis.From a molecular genetic perspective,IPNBs exhibit early genetic variations,and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs.The histological subtypes of IPNBs include gastric,intestinal,pancreaticobiliary,or oncocytic subtypes,but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin.Due to the rarity of these lesions and the absence of specific clinical and laboratory features,imaging is crucial for the preoperative diagnosis of IPNB,with local bile duct dilation and growth along the bile ducts being the main imaging features.Surgical resection remains the optimal treatment for IPNBs,but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.
基金the HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)supported by the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.11673023,U1838201,U1838115,U1838111,U1838202,11733009 and U1838108)。
文摘We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.
基金the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.U1838201,U1838202,U1838101 and U1938109)the Insight-HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)。
文摘The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response(LTR)on the timing analysis from three aspects:the power spectral density,the pulse profile and the time lag.After the LTR,the value of power spectral density monotonously decreases with the increasing frequency.The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz.The corresponding frequency for quasi-periodic oscillation(QPO)signals is 458 Hz.The root mean square(RMS)of QPOs holds a similar behaviour.After the LTR,the centroid frequency and full width at half maxima(FWHM)of QPOs signals do not change.The LTR reduces the RMS of pulse profiles and shifts the pulse phase.In the time domain,the LTR only reduces the peak value of the cross-correlation function while it does not change the peak position;thus it will not affect the result of the time lag.When considering the time lag obtained from two instruments and one among them is LE,a 1.18 ms lag is expected caused by the LTR.The time lag calculated in the frequency domain is the same as that in the time domain.