A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encoun...A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.展开更多
Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each correspondin...Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts.展开更多
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM202300056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province (Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program (Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd. (Grant No.KYXM2021000049,KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China (41630640)the National Natural Science Foundation of China (41790445)the National Science Foundation of Innovation Research Group (41521002)。
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
文摘A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.
基金National Natural Science Foundation of China(Grant Nos.51675429,51205313)Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCS05009)111 Project of China(Grant No.B13044)
文摘Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts.