Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and...Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.展开更多
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
基金Sponsored by the Key Project of National Natural Science Foundation of China (Grant No.51138004)the South China Key Laboratory Fund (Grant No.20121458321)the Architect Design on Energy-saving Residence in Shanghai (Grant No.08-2A-0183-zong)
文摘Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.