The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that...The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
基金Projects(51404183,51504177)supported by the National Natural Science Foundation of China。
文摘The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.