期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
1
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller tianran sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft X-ray Imaging micropore optics large area CCD
下载PDF
Two methods for separating the magnetospheric solar wind charge exchange soft X-ray emission from the diffuse X-ray background 被引量:2
2
作者 YingJie Zhang tianran sun +5 位作者 JenniferACarter WenHao Liu Steve Sembay ShuiNai Zhang Li Ji Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期119-132,共14页
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo... Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options. 展开更多
关键词 solar wind charge exchange(SWCX) ROSAT All-Sky Survey(RASS) soft X-ray X-ray imaging MAGNETOSPHERE
下载PDF
Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath 被引量:2
3
作者 Jin Guo tianran sun +6 位作者 San Lu QuanMing Lu Yu Lin XueYi Wang Chi Wang RongSheng Wang Kai Huang 《Earth and Planetary Physics》 EI CSCD 2024年第1期47-58,共12页
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ... Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered. 展开更多
关键词 MAGNETOPAUSE X-ray emissivity X-ray imaging SMILE global hybrid-PIC simulation
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
4
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li tianran sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Tomographic reconstruction of the Earth’s magnetosheath from multiple spacecraft:a theoretical study 被引量:2
5
作者 A.M.Jorgensen tianran sun +4 位作者 Y.Huang L.Li R.Xu L.Dai Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期204-214,共11页
Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous recon... Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous reconstruction of the magnetosheath and magnetopause using a few images recorded simultaneously from a few spacecraft.This work is motivated by the prospect of possibly having two or three soft X-ray imagers in space in the coming years,and that many phenomena which occur at the magnetopause boundary,such as reconnection events and pressure pulse responses,do not lend themselves as well to superposed epoch analysis.If the reconstruction is successful-which we demonstrate in this paper that it can be-this collection of imagers can be used to reconstruct the magnetosheath and magnetopause from a single image from each spacecraft,allowing for high time resolution reconstructions.In this paper we explore the reconstruction using,two,three,and four spacecraft.We show that the location of the subsolar point of the magnetopause can be determined with just two satellites,and that volume emissions of soft X-rays,and the shape of the boundary,can be reconstructed using three or more satellites. 展开更多
关键词 MAGNETOSHEATH TOMOGRAPHY soft X-ray imaging SMILE
下载PDF
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:2
6
作者 JiaoJiao Zhang tianran sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
下载PDF
Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions:Global kinetic simulations and Soft X-ray Imaging 被引量:2
7
作者 ZhongWei Yang RiKu Jarvinen +7 位作者 XiaoCheng Guo tianran sun Dimitra Koutroumpa George K.Parks Can Huang BinBin Tang QuanMing Lu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期59-69,共11页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes. 展开更多
关键词 collisionless shock SMILE mission FORESHOCK
下载PDF
Preface to the Special Issue on Modeling and Data Analysis Methods for the SMILE mission 被引量:1
8
作者 tianran sun Hyunju Connor Andrey Samsonov 《Earth and Planetary Physics》 EI CSCD 2024年第1期1-4,共4页
The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)project(http://www.nssc.cas.cn/smile/,https://www.cosmos.esa.int/web/smile/mission)is a joint spacecraft mission of the European Space Agency(ESA)and the Chi... The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)project(http://www.nssc.cas.cn/smile/,https://www.cosmos.esa.int/web/smile/mission)is a joint spacecraft mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)with an expected launch in 2025.SMILE aims to study the global interactions of solar wind–magnetosphere–ionosphere innovatively by imaging the Earth’s magnetosheath and cusps in soft X-rays and the northern auroral region in ultraviolet(UV)while simultaneously measuring plasma and magnetic field parameters in the solar wind and magnetosheath along a highly-elliptical and highly-inclined orbit.This special issue is composed of 22 articles,presenting recent progress in modeling and data analysis techniques developed for the SMILE mission.In this preface,we categorize the articles into the following seven topics and provide brief summaries:(1)instrument descriptions of the Soft X-ray Imager(SXI),(2)numerical modeling of the X-ray signals,(3)data processing of the X-ray images,(4)boundary tracing methods from the simulated images,(5)physical phenomena and a mission concept related to the scientific goals of SMILE-SXI,(6)studies of the aurora,and(7)ground-based support for SMILE. 展开更多
关键词 SMILE X-ray imaging MAGNETOSPHERE auroral IONOSPHERE
下载PDF
Quantification of the redox properties of microplastics and their effect on arsenite oxidation
9
作者 Lin Chen Dengjun Wang +5 位作者 tianran sun Tingting Fan Song Wu Guodong Fang Min Yang Dongmei Zhou 《Fundamental Research》 CAS CSCD 2023年第5期777-785,共9页
Microplastics have attracted global concern.The environmental-weathering processes control their fate,transport,transformation,and toxicity to wildlife and human health,but their impacts on biogeochemical redox proces... Microplastics have attracted global concern.The environmental-weathering processes control their fate,transport,transformation,and toxicity to wildlife and human health,but their impacts on biogeochemical redox processes remain largely unknown.Herein,multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics.The spectroscopic results indicated that weathering of phenol-formaldehyde resins(PFs)by hydrogen peroxide(H2O2)led to a slight decrease in the content of phenol functional groups,accompanied by an increase in semiquinone radicals,quinone,and carboxylic groups.Electrochemical and wet-chemistry quantifications,coupled with microbial-chemical characterizations,demonstrated that the PFs exhibited appreciable electron-donating capacity(0.264-1.15 mmol e-g^(-1))and electron-accepting capacity(0.120-0.300 mmol e-g^(-1)).Specifically,the phenol groups and semiquinone radicals were responsible for the electron-donating capacity,whereas the quinone groups dominated the electron-accepting capacity.The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and-accepting reactions.More importantly,the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation.In addition to the H2O2-weathered PFs,the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity.This study reports important redox properties of microplastics and their effect in mediating contaminant transformation.These findings will help to better understand the fate,transformation,and biogeochemical roles of microplastics on element cycling and contaminant fate. 展开更多
关键词 Microplastics WEATHERING Redox property Semiquinone radicals Electron-donating and-accepting capacity Arsenite oxidation
原文传递
A Lunar-based Soft X-ray Imager(LSXI)for the Earth's magnetosphere 被引量:6
10
作者 Yihong GUO Chi WANG +5 位作者 Fei WEI tianran sun Xizheng YU Songwu PENG Graziella BRANDUARDI-RAYMONT Steven SEMBAY 《Science China Earth Sciences》 SCIE EI CSCD 2021年第7期1026-1035,共10页
We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of... We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of Earth's magnetosphere based on the solar wind charge exchange(SWCX)X-ray emission.Global perspective is crucial to understand the overall interaction of the solar wind with magnetosphere.LSXI is capable of continuously monitoring the evolution of geospace conditions under the impact of the solar wind by simultaneous observation of the bow shock,magnetosheath,magnetopause and cusps for the first time.This proposal is answering the call for the Chinese Lunar Exploration Program Phase IV. 展开更多
关键词 Soft X-ray imager LUNAR MAGNETOSPHERE Micro-pore optics
原文传递
Deriving the magnetopause position from wide field-of-view soft X-ray imager simulation 被引量:4
11
作者 Yihong GUO tianran sun +1 位作者 Chi WANG Steven SEMBAY 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第8期1601-1611,共11页
Imaging techniques provide essential information in astronomical and space physics studies.The Soft X-ray Imager(SXI)will obtain images of the Earth’s magnetosphere via the solar wind charge exchange process in a glo... Imaging techniques provide essential information in astronomical and space physics studies.The Soft X-ray Imager(SXI)will obtain images of the Earth’s magnetosphere via the solar wind charge exchange process in a global view.However,it is a challenge to reconstruct its 3-D structures from the observed 2-D image(s).In this paper,a recently proposed method,Tangent Fitting Approach(TFA),is validated to reconstruct the large-scale magnetopause from a single X-ray image obtained by instrument simulation.It is revealed that the large-scale magnetopause under a medium solar wind number density can be well reconstructed,although the locations of maximum X-ray photon counts are scattered in the image due to instrumental effects and diffusive sky background.Higher solar wind number density leads to stronger signals and further leads to better reconstruction results.For lower solar wind density,the X-ray maximum photon counts may not be identified from the SXI simulations,preprocessing of the images shall be considered before applying TFA.Furthermore,the subsolar magnetopause can be well derived when the satellite is on the dayside orbits. 展开更多
关键词 Soft X-ray Imager MAGNETOSPHERE SMILE TFA
原文传递
All-fiber spatiotemporal mode-locking lasers with large modal dispersion 被引量:2
12
作者 Huaiwei Zhang Yunhong Zhang +8 位作者 Jiying Peng Xinyang Su Xiaosheng Xia Dongjian Xu Junhao Chen tianran sun Kai Zheng Jianquan Yao Yi Zheng 《Photonics Research》 SCIE EI CAS CSCD 2022年第2期483-490,共8页
It is a challenging problem to balance the modal walk-off(modal dispersion) between multiple transverse modes and chromatic dispersion in long step-index multimode fibers(MMFs). By properly designing the oscillator, w... It is a challenging problem to balance the modal walk-off(modal dispersion) between multiple transverse modes and chromatic dispersion in long step-index multimode fibers(MMFs). By properly designing the oscillator, we have overcome the difficulty and successfully obtained an all-fiber spatiotemporal mode-locked laser based on step-index MMFs with large modal dispersion for the first time, to our knowledge. Various proofs of spatiotemporal mode-locking(STML) such as spatial, spectral, and temporal properties, are measured and characterized.This laser works at a fundamental frequency of 28.7 MHz, and achieves a pulse laser with single pulse energy of 8 nJ, pulse width of 20.1 ps, and signal-to-noise ratio of-70 dB. In addition, we observe a dynamic evolution of the transverse mode energy during the STML establishment process that has never been reported before. 展开更多
关键词 fiber DISPERSION MODAL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部