Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.H...Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.展开更多
Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrog...Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrogen production,however it remains challenging.Here,we report the synthesis of hierarchical nanorod arrays comprising core-shell structured P-doped NiMoO4@NiFe-coordination polymer(denoted as P-NiMoO4@NiFeCP)as bifunctional electrocatalysts for water electrolysis.Furthermore,we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity,manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER.With advantageous hierarchical architectures and unique core-shell structures,optimized P-NiMoO_(4)@NiFeCP-7.3(7.3 is the shell thickness in nm)requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm^(−2)for the HER and OER in 1 M KOH,respectively.More importantly,it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis,delivering large current densities of 500 and 1000 mA·cm^(−2)at low cell voltages of 1.804 and 1.865 V,along with high stability of over 500 h at 1000 mA·cm−2,demonstrating the great potential of this electrocatalyst towards practical applications.展开更多
基金supported by the National Natural Science Foundation of China(22379100,U21A20312)the Shenzhen Science and Technology Program(Grant No.20231121200418001)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120084)the Key Project of Department of Education of Guangdong Province(2023ZDZX3020)。
文摘Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
基金the Shenzhen Science and Technology Program(Nos.SGDX20201103095802006,RCYX20200714114535052,JCYJ20190808150001775,and JCYJ20190808143007479)the National Natural Science Foundation of China(Nos.U21A20312 and 21975162).
文摘Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrogen production,however it remains challenging.Here,we report the synthesis of hierarchical nanorod arrays comprising core-shell structured P-doped NiMoO4@NiFe-coordination polymer(denoted as P-NiMoO4@NiFeCP)as bifunctional electrocatalysts for water electrolysis.Furthermore,we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity,manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER.With advantageous hierarchical architectures and unique core-shell structures,optimized P-NiMoO_(4)@NiFeCP-7.3(7.3 is the shell thickness in nm)requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm^(−2)for the HER and OER in 1 M KOH,respectively.More importantly,it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis,delivering large current densities of 500 and 1000 mA·cm^(−2)at low cell voltages of 1.804 and 1.865 V,along with high stability of over 500 h at 1000 mA·cm−2,demonstrating the great potential of this electrocatalyst towards practical applications.