Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI...This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The...This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS) have several applications in surface structuring and functionalization. Three major challenges exist in the fabrication of regular and uniform LIPSS: enhanc...Femtosecond laser-induced periodic surface structures(LIPSS) have several applications in surface structuring and functionalization. Three major challenges exist in the fabrication of regular and uniform LIPSS: enhancing the periodic energy deposition, reducing the residual heat, and avoiding the deposited debris. Herein, we fabricate an extremely regular low-spatial-frequency LIPSS(LSFL) on a silicon surface by a temporally shaped femtosecond laser. Based on a 4 f configuration zero-dispersion pulse shaping system, a Fourier transform limit(FTL) pulse is shaped into a pulse train with varying intervals in the range of 0.25–16.2 ps using periodic π-phase step modulation. Under the irradiation of the shaped pulse with an interval of 16.2 ps, extremely regular LSFLs are efficiently fabricated on silicon. The scan velocity for fabricating regular LSFL is 2.3 times faster, while the LSFL depth is 2 times deeper, and the diffraction efficiency is 3 times higher than those of LSFL using the FTL pulse.The formation mechanisms of regular LSFL have been studied experimentally and theoretically. The results show that the temporally shaped pulse enhances the excitation of surface plasmon polaritons and the periodic energy deposition while reducing the residual thermal effects and avoiding the deposition of the ejected debris, eventually resulting in regular and deeper LSFL on the silicon surface.展开更多
Compressed ultrafast photography(CUP)is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred fram...Compressed ultrafast photography(CUP)is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames.This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot.With recent unprecedented technical developments and extensions of this methodology,it has been widely used in ultrafast optical imaging and metrology,ultrafast electron diffraction and microscopy,and information security protection.We review the basic principles of CUP,its recent advances in data acquisition and image reconstruction,its fusions with other modalities,and its unique applications in multiple research fields.展开更多
Printing stable color with a lithography-free and environment-friendly technique is in high demand for applications.We report a facile strategy of ultrafast laser direct writing(ULDW)to produce large-scale embedded st...Printing stable color with a lithography-free and environment-friendly technique is in high demand for applications.We report a facile strategy of ultrafast laser direct writing(ULDW)to produce large-scale embedded structural colors inside transparent solids.The diffraction effect of gratings enables effective generation of structural colors across the entire visible spectrum.The structural colors inside the fused silica glass have been demonstrated to exhibit excellent thermal stability under high temperature up to 1200℃, which promises that the written information can be stable for long time even with unlimited lifetime at room temperature.The structural colors in the applications of coloring,anti-counterfeiting,and information storage are also demonstrated.Our studies indicate that the presented ULDW allows for fabricating large-scale and high thermal-stability structural colors with prospects of three-dimensional patterning,which will find various applications,especially under harsh conditions such as high temperature.展开更多
In ultrafast optical imaging,it is critical to obtain the spatial structure,temporal evolution,and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversib...In ultrafast optical imaging,it is critical to obtain the spatial structure,temporal evolution,and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversible dynamic scenes.However,so far,there are no ultrafast optical imaging techniques that can simultaneously capture the spatial–temporal–spectral five-dimensional(5D)information of dynamic scenes.To break the limitation of the existing techniques in imaging dimensions,we develop a spectral-volumetric compressed ultrafast photography(SV-CUP)technique.In our SV-CUP,the spatial resolutions in the x,y and z directions are,respectively,0.39,0.35,and 3 mm with an 8.8 mm×6.3 mm field of view,the temporal frame interval is 2 ps,and the spectral frame interval is 1.72 nm.To demonstrate the excellent performance of our SV-CUP in spatial–temporal–spectral 5D imaging,we successfully measure the spectrally resolved photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots.Our SV-CUP brings unprecedented detection capabilities to dynamic scenes,which has important application prospects in fundamental research and applied science.展开更多
The ability to manipulate the valence state conversion of rare-earth ions is crudal for their applications in color displays, optoelectronic devices, laser sources, and optical memory. The conventional femtosecond las...The ability to manipulate the valence state conversion of rare-earth ions is crudal for their applications in color displays, optoelectronic devices, laser sources, and optical memory. The conventional femtosecond laser pulse has been shown to be a well-established tool for realizing the valence state conversion of rare-earth ions, although the valence state conversion efficiency is relatively low. Here, we first propose a femtosecond laser pulse shaping tech- nique for improving the valence state conversion effidency of rare-earth ions. Our experimental results demonstrate that the photoreduction emciency from Sm3+ to Sm2+ in Sm3+-doped sodium aluminoborate glass using a zt phase step modulation can be comparable to that using a transform-limited femtosecond laser field, while the peak laser intensity is decreased by about 63%, which is very beneficial for improving the valence state conversion efficiency under the laser-induced damage threshold of the glass sample. Furthermore, we also theoretically develop a (2 + 1) resonance-mediated three-photon absorption model to explain the modulation of the photoreduction efficiency from Sm3+ to Sm2+ under the π-shaped femtosecond laser field.展开更多
Compressed ultrafast photography(CUP) is the fastest single-shot passive ultrafast optical imaging technique,which has shown to be a powerful tool in recording self-luminous or non-repeatable ultrafast phenomena.Howev...Compressed ultrafast photography(CUP) is the fastest single-shot passive ultrafast optical imaging technique,which has shown to be a powerful tool in recording self-luminous or non-repeatable ultrafast phenomena.However, the low fidelity of image reconstruction based on the conventional augmented-Lagrangian(AL)and two-step iterative shrinkage/thresholding(Tw IST) algorithms greatly prevents practical applications of CUP, especially for those ultrafast phenomena that need high spatial resolution. Here, we develop a novel AL and deep-learning(DL) hybrid(i.e., AL+DL) algorithm to realize high-fidelity image reconstruction for CUP. The AL+DL algorithm not only optimizes the sparse domain and relevant iteration parameters via learning the dataset but also simplifies the mathematical architecture, so it greatly improves the image reconstruction accuracy. Our theoretical simulation and experimental results validate the superior performance of the AL+DL algorithm in image fidelity over conventional AL and Tw IST algorithms, where the peak signalto-noise ratio and structural similarity index can be increased at least by 4 d B(9 d B) and 0.1(0.05) for a complex(simple) dynamic scene, respectively. This study can promote the applications of CUP in related fields, and it will also enable a new strategy for recovering high-dimensional signals from low-dimensional detection.展开更多
Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference ...Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference periods. This study reports regular and uniform periodic ripples fabricated efficiently by the interference of two femtosecond laser beams via a cylindrical lens. The interference period is adjusted to be an integer multiple of the wavelength of a surface plasmon polariton. Regular and uniform subwavelength nanogratings(RUSNGs)on a silicon wafer of a diameter of 100 mm are fabricated with a scanning velocity of 6–9 mm/s. Bright and pure colors(including purple, blue, and red) are demonstrated on different patterns covered with RUSNGs.展开更多
Femtosecond laser ablation(FLA)has been playing a prominent role in precision fabrication of material because of its circumvention of thermal effect and extremely high spatial resolution.Molecular dynamics modeling,as...Femtosecond laser ablation(FLA)has been playing a prominent role in precision fabrication of material because of its circumvention of thermal effect and extremely high spatial resolution.Molecular dynamics modeling,as a powerful tool to study the mechanism of femtosecond laser ablation,still lacks the connection between its simulation results and experimental observations at present.Here we combine a single-shot chirped spectral mapping ultrafast photography(CSMUP)technique in experiment and a three-dimensional two-temperature model-based molecular dynamics(3D TTM-MD)method in theory to jointly investigate the FLA process of bulky gold.Our experimental and simulated results show quite high consistency in time-resolved morphologic dynamics.According to the highly accurate simulations,the FLA process of gold at the high laser fluence is dominated by the phase explosion,which shows drastic vaporized cluster eruption and pressure dynamics,while the FLA process at the low laser fluence mainly results from the photomechanical spallation,which shows moderate temperature and pressure dynamics.This study reveals the ultrafast dynamics of gold with different ablation schemes,which has a guiding significance for the applications of FLA on various kinds of materials.展开更多
The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phas...The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm^(3+) to Yb^(3+) ions in co-doped glass ceramics. Tm^(3+) ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm^(3+) sensitizers and the ground-state Yb^(3+) activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway.The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A(1+2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.展开更多
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金We are grateful for financial supports from the Ministry of Science and Technology of China(Grant No.2021YFA1401100)National Natural Science Foundation of China(Grant Nos.12074123,11804227,91950112),and the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474097,11374099,and 11274116)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)China
文摘This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.
基金Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)Science and Technology Commission of Shanghai Municipality(19ZR1414500)National Natural Science Foundation of China(11804227,12074123,91950112)。
文摘Femtosecond laser-induced periodic surface structures(LIPSS) have several applications in surface structuring and functionalization. Three major challenges exist in the fabrication of regular and uniform LIPSS: enhancing the periodic energy deposition, reducing the residual heat, and avoiding the deposited debris. Herein, we fabricate an extremely regular low-spatial-frequency LIPSS(LSFL) on a silicon surface by a temporally shaped femtosecond laser. Based on a 4 f configuration zero-dispersion pulse shaping system, a Fourier transform limit(FTL) pulse is shaped into a pulse train with varying intervals in the range of 0.25–16.2 ps using periodic π-phase step modulation. Under the irradiation of the shaped pulse with an interval of 16.2 ps, extremely regular LSFLs are efficiently fabricated on silicon. The scan velocity for fabricating regular LSFL is 2.3 times faster, while the LSFL depth is 2 times deeper, and the diffraction efficiency is 3 times higher than those of LSFL using the FTL pulse.The formation mechanisms of regular LSFL have been studied experimentally and theoretically. The results show that the temporally shaped pulse enhances the excitation of surface plasmon polaritons and the periodic energy deposition while reducing the residual thermal effects and avoiding the deposition of the ejected debris, eventually resulting in regular and deeper LSFL on the silicon surface.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.91850202,11774094,11727810,11804097,and 61720106009)the Science and Technology Commission of Shanghai Municipality(Grant Nos.19560710300 and 17ZR146900)the China Postdoctoral Science Foundation(Grant No.2018M641958).
文摘Compressed ultrafast photography(CUP)is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames.This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot.With recent unprecedented technical developments and extensions of this methodology,it has been widely used in ultrafast optical imaging and metrology,ultrafast electron diffraction and microscopy,and information security protection.We review the basic principles of CUP,its recent advances in data acquisition and image reconstruction,its fusions with other modalities,and its unique applications in multiple research fields.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFB2800500)National Natural Science Foundation of China(Nos.U20A20211,51902286,61775192,61905215,and 51772270)+1 种基金Open Funds of the State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of SciencesFundamental Research Funds for the Central Universities.
文摘Printing stable color with a lithography-free and environment-friendly technique is in high demand for applications.We report a facile strategy of ultrafast laser direct writing(ULDW)to produce large-scale embedded structural colors inside transparent solids.The diffraction effect of gratings enables effective generation of structural colors across the entire visible spectrum.The structural colors inside the fused silica glass have been demonstrated to exhibit excellent thermal stability under high temperature up to 1200℃, which promises that the written information can be stable for long time even with unlimited lifetime at room temperature.The structural colors in the applications of coloring,anti-counterfeiting,and information storage are also demonstrated.Our studies indicate that the presented ULDW allows for fabricating large-scale and high thermal-stability structural colors with prospects of three-dimensional patterning,which will find various applications,especially under harsh conditions such as high temperature.
基金partially partially supported by the National Natural Science Foundation of China(Grant Nos.91850202,11774094,12074121,11804097,11727810,and 12034008)the Science and Technology Commission of Shanghai Municipality(Grant Nos.19560710300 and 20ZR1417100)Ministère des Relations internationales et de la Francophonie du Québec。
文摘In ultrafast optical imaging,it is critical to obtain the spatial structure,temporal evolution,and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversible dynamic scenes.However,so far,there are no ultrafast optical imaging techniques that can simultaneously capture the spatial–temporal–spectral five-dimensional(5D)information of dynamic scenes.To break the limitation of the existing techniques in imaging dimensions,we develop a spectral-volumetric compressed ultrafast photography(SV-CUP)technique.In our SV-CUP,the spatial resolutions in the x,y and z directions are,respectively,0.39,0.35,and 3 mm with an 8.8 mm×6.3 mm field of view,the temporal frame interval is 2 ps,and the spectral frame interval is 1.72 nm.To demonstrate the excellent performance of our SV-CUP in spatial–temporal–spectral 5D imaging,we successfully measure the spectrally resolved photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots.Our SV-CUP brings unprecedented detection capabilities to dynamic scenes,which has important application prospects in fundamental research and applied science.
基金National Natural Science Foundation of China(NSFC)(11474096,11727810,11774094,61720106009)Science and Technology Commission of Shanghai Municipality(STCSM),China(16520721200,17ZR146900)
文摘The ability to manipulate the valence state conversion of rare-earth ions is crudal for their applications in color displays, optoelectronic devices, laser sources, and optical memory. The conventional femtosecond laser pulse has been shown to be a well-established tool for realizing the valence state conversion of rare-earth ions, although the valence state conversion efficiency is relatively low. Here, we first propose a femtosecond laser pulse shaping tech- nique for improving the valence state conversion effidency of rare-earth ions. Our experimental results demonstrate that the photoreduction emciency from Sm3+ to Sm2+ in Sm3+-doped sodium aluminoborate glass using a zt phase step modulation can be comparable to that using a transform-limited femtosecond laser field, while the peak laser intensity is decreased by about 63%, which is very beneficial for improving the valence state conversion efficiency under the laser-induced damage threshold of the glass sample. Furthermore, we also theoretically develop a (2 + 1) resonance-mediated three-photon absorption model to explain the modulation of the photoreduction efficiency from Sm3+ to Sm2+ under the π-shaped femtosecond laser field.
基金National Natural Science Foundation of China(11727810,11774094,11804097,91850202)Science and Technology Commission of Shanghai Municipality(19560710300,20ZR1417100)。
文摘Compressed ultrafast photography(CUP) is the fastest single-shot passive ultrafast optical imaging technique,which has shown to be a powerful tool in recording self-luminous or non-repeatable ultrafast phenomena.However, the low fidelity of image reconstruction based on the conventional augmented-Lagrangian(AL)and two-step iterative shrinkage/thresholding(Tw IST) algorithms greatly prevents practical applications of CUP, especially for those ultrafast phenomena that need high spatial resolution. Here, we develop a novel AL and deep-learning(DL) hybrid(i.e., AL+DL) algorithm to realize high-fidelity image reconstruction for CUP. The AL+DL algorithm not only optimizes the sparse domain and relevant iteration parameters via learning the dataset but also simplifies the mathematical architecture, so it greatly improves the image reconstruction accuracy. Our theoretical simulation and experimental results validate the superior performance of the AL+DL algorithm in image fidelity over conventional AL and Tw IST algorithms, where the peak signalto-noise ratio and structural similarity index can be increased at least by 4 d B(9 d B) and 0.1(0.05) for a complex(simple) dynamic scene, respectively. This study can promote the applications of CUP in related fields, and it will also enable a new strategy for recovering high-dimensional signals from low-dimensional detection.
基金supported by the National Natural Science Foundation of China (Nos. 91950112,11474097,91950112)the Science and Technology Commission of Shanghai Municipality (No. 19ZR1414500)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)。
文摘Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference periods. This study reports regular and uniform periodic ripples fabricated efficiently by the interference of two femtosecond laser beams via a cylindrical lens. The interference period is adjusted to be an integer multiple of the wavelength of a surface plasmon polariton. Regular and uniform subwavelength nanogratings(RUSNGs)on a silicon wafer of a diameter of 100 mm are fabricated with a scanning velocity of 6–9 mm/s. Bright and pure colors(including purple, blue, and red) are demonstrated on different patterns covered with RUSNGs.
基金National Natural Science Foundation of China(91850202,92150301,12074121,62105101,62175066,11727810,12034008)Science and Technology Commission of Shanghai Municipality(21XD1400900,20ZR1417100,21JM0010700).
文摘Femtosecond laser ablation(FLA)has been playing a prominent role in precision fabrication of material because of its circumvention of thermal effect and extremely high spatial resolution.Molecular dynamics modeling,as a powerful tool to study the mechanism of femtosecond laser ablation,still lacks the connection between its simulation results and experimental observations at present.Here we combine a single-shot chirped spectral mapping ultrafast photography(CSMUP)technique in experiment and a three-dimensional two-temperature model-based molecular dynamics(3D TTM-MD)method in theory to jointly investigate the FLA process of bulky gold.Our experimental and simulated results show quite high consistency in time-resolved morphologic dynamics.According to the highly accurate simulations,the FLA process of gold at the high laser fluence is dominated by the phase explosion,which shows drastic vaporized cluster eruption and pressure dynamics,while the FLA process at the low laser fluence mainly results from the photomechanical spallation,which shows moderate temperature and pressure dynamics.This study reveals the ultrafast dynamics of gold with different ablation schemes,which has a guiding significance for the applications of FLA on various kinds of materials.
基金National Natural Science Foundation of China(NSFC)(11727810,11774094,61720106009,91850202)Shanghai Minhang Science and Technology Commission(16520721200,17ZR146900)
文摘The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm^(3+) to Yb^(3+) ions in co-doped glass ceramics. Tm^(3+) ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm^(3+) sensitizers and the ground-state Yb^(3+) activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway.The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A(1+2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.