The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab...The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.展开更多
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)...The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.展开更多
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele...The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.展开更多
Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This articl...Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution,and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third-party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.展开更多
Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/ca...Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/carbon nanotube/polyimide(gradient-conductive MXene/CNT/PI,GCMCP)aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection.The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly(amic acid)inks with different CNT contents,where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer.In addition,the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections.Consequently,the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency(68.2 dB)and low reflection(R=0.23).Furthermore,the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission,which shows a prosperous application prospect in defense industry and aerospace.展开更多
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally...Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.展开更多
Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF d...Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond.展开更多
Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@...Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector.In alkaline media,the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction(OER)performances.Surprisingly,the(Mo,Fe)P_(2)O_(7)@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm^(-2)in 1 mol L^(-1)KOH,respectively.Furthermore,the(Mo,Fe)P_(2)O_(7)@NF shows outstanding performances in alkaline salty water and 1 mol L^(-1)high purity KOH.A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER,which has a positive impact on both hydrogen energy application and environmental restoration.展开更多
The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(...The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.展开更多
Separators are indispensable components of modern electrochemical energy storage devices such as lithium-ion batteries(LIBs).They perform the critical function of physically separating the electrodes to prevent short-...Separators are indispensable components of modern electrochemical energy storage devices such as lithium-ion batteries(LIBs).They perform the critical function of physically separating the electrodes to prevent short-circuits while permitting the ions to pass through.While conventional separators using polypropylene(PP) and polyethylene(PE) are prone to shrinkage and melting at relatively high temperatures(150℃ or above) causing short circuits and thermal runaway,separators made of thermally stable polyimides(PIs) are electrochemically stable and resistant to high temperatures,and possess good mechanical strength-making them a promising solution to the safety concerns of LIBs.In this review,the research progress on PI separators for use in LIBs is summarized with a special focus on molecular design and microstructural control.In view of the significant progress in advanced chemistries beyond LIBs,recent advances in PI-based membranes for applications in lithium-sulfur,lithium-metal,and solid-state batteries are also reviewed.Finally,practical issues are also discussed along with their prospects.展开更多
Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stabl...Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.展开更多
Two-dimensional graphene film exhibits sluggish ion diffusivity while three-dimensional(3D)graphene aerogel has low packing density and poor mechanical flexibility.Consequently,there is an urgent need for graphenebase...Two-dimensional graphene film exhibits sluggish ion diffusivity while three-dimensional(3D)graphene aerogel has low packing density and poor mechanical flexibility.Consequently,there is an urgent need for graphenebased film with both mechanical robustness and high specific capacitance.Here,we present an easy and scalable strategy for fabricating a free-standing flexible graphene-based aerogel film electrode with a two-layered structure,in which the top layer is an interconnected macroporous reduced graphene oxide/carbon nanotube(RGO/CNT)aerogel,and the bottom layer is a flexible electrospun polyacrylonitrile(PAN)nanofiber membrane.The porous 3D structure of the aerogel provides fast transport of electrolyte ions and electrons,while the nanofiber membrane provides both strong support for the aerogel and mechanical flexibility.Polypyrrole(PPy)can be uniformly loaded on RGO/CNT/PAN(RCP)composite aerogel film to provide pseudocapacitance,and nitrogen-doped RGO/CNT/carbon nanofiber(NRCC)aerogel film can be obtained by further pyrolysis.The resultant RCP@PPy-0.05//NRCC based asymmetric supercapacitor can have a maximum voltage of 1.7 V and a maximum energy density of 60.6 W h kg^(-1)at 850.2 W kg^(-1).This indicates that free-standing graphene-based aerogel film can be used in flexible supercapacitors.展开更多
The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embe...The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber(TiO_(2)@NCNF)composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host.Under the protection of the nanofiber walls,the uniformly dispersed TiO_(2) nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry.Besides,the mesoporous microstructure in the fibrous framework endows the TiO_(2)@NCNF host with strong physical reservation for sulfur and LiPSs,sufficient pathways for electron/ion transfer,and excellent endurance for volume change.As expected,the sulfur-loaded TiO_(2)@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan(capacity fading rate of 0.062%per cycle over 500 cycles)at 2.0 C.Furthermore,the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.展开更多
Aerogels are widely used as thermal insulation materials because of their high porosity and low bulk density.However,the insulation performance of aerogels is limited to a narrow temperature range.Besides,the preparat...Aerogels are widely used as thermal insulation materials because of their high porosity and low bulk density.However,the insulation performance of aerogels is limited to a narrow temperature range.Besides,the preparation of aerogel materials with precisely controlled and complex architectures is still challenging.Here,we report 3D printed polyimide/silica aerogel particle(PI/SAP)composite aerogels for thermal insulation in a wide range of temperature with customized applications.The printability and shape fidelity of 3D printed composite aerogels is improved by adding hydrophilic SAP as a rheology modifier.The resulting PI/SAP composite aerogel exhibits excellent flame-retardant properties and thermal insulation from-50℃ to 1300℃.Moreover,the PI/SAP composite aerogel with customized shape can be applied for battery insulation at subzero temperatures,promising to be used as customizable and stable insulating materials in a variety of complex and extreme applications.展开更多
Passive daytime radiative cooling(PDRC)is an innovative and sustainable cooling technology that holds immense potential for addressing the energy crisis.Despite the numerous reports on radiative coolers,the design of ...Passive daytime radiative cooling(PDRC)is an innovative and sustainable cooling technology that holds immense potential for addressing the energy crisis.Despite the numerous reports on radiative coolers,the design of a straightforward,efficient,and readily producible system remains a challenge.Herein,we present the development of a hierarchical aligned porous poly(vinylidene fluoride)(HAP-PVDF)film through a freeze-thaw-promoted nonsolvent-induced phase separation strategy.This film features oriented microporous arrays in conjunction with random nanopores,enabling efficient radiative cooling performance under direct sunlight conditions.The incorporation of both micro-and nano-pores in the HAP-PVDF film results in a remarkable solar reflectance of 97%and a sufficiently high infrared thermal emissivity of 96%,facilitating sub-environmental cooling at 18.3℃ on sunny days and 13.1℃ on cloudy days.Additionally,the HAP-PVDF film also exhibits exceptional flexibility and hydrophobicity.Theoretical calculations further confirm a radiative cooling power of 94.8 W·m^(-2)under a solar intensity of 1000W·m^(-2),demonstrating a performance comparable to the majority of reported radiative coolers.展开更多
Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). H...Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through in-situ crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na+ transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na+ flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm^(-2), and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.展开更多
Surface-enhanced Raman scattering spectroscopy(SERS)has emerged as a powerful analytical technique to enable nanoscale investigations of energy systems.This mini-review focuses on the applications of in-situ and opera...Surface-enhanced Raman scattering spectroscopy(SERS)has emerged as a powerful analytical technique to enable nanoscale investigations of energy systems.This mini-review focuses on the applications of in-situ and operando SERS in energy-related research,highlighting its unique capabilities and significant contributions to understanding energy storage and conversion processes.We first introduce the fundamental principles of SERS,key SERS-derived techniques,and commonly employed platforms.Subsequently,we delve into the diverse applications of in-situ and operando SERS across various energy systems,encompassing photocatalytic and electrocatalytic systems,fuel cells,solar cells,and batteries.Finally,we conclude with our perspective on the current challenges and prospects in this area.We hope thismini-review serves as an essential overview to guide the design and implementation of in-situ and operando SERS studies of energy systems.展开更多
Personal daytime radiative cooling(PDRC)materials have high sunlight reflection and high selective emis-sivity to outer space in the main atmospheric window,demonstrating huge potential in energy-saving for sustainabl...Personal daytime radiative cooling(PDRC)materials have high sunlight reflection and high selective emis-sivity to outer space in the main atmospheric window,demonstrating huge potential in energy-saving for sustainable development.Recently,polymer-based membranes for radiative cooling have been widely re-ported,due to their easy processing,low cost,and unique optical performance.However,the desired high sunlight reflectance of PDRC materials is easily dampened by environmental aging,high temperature,and ultraviolet(UV)irradiation,resulting in reduced cooling performance for most polymers,adverse to large-scale practical applications.In this work,we demonstrate a novel polyimide nanofiber(PINF)membrane with a fluorine-containing structure via typical electrospinning technology.The resultant PINF membrane exhibits high sunlight reflectance,UV resistance,and excellent thermal stability,rendering anti-aging day-time radiative cooling.The sunlight reflectance of PINF membranes could maintain constant in the aging test for continuous 720 h under outdoor solar irradiation,exhibiting durable and long-term personal day-time radiative cooling performance.展开更多
Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for th...Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for the catalyst design,especially for those reactions where the noble metals deliver the best catalyzing performance.Single-atom catalysts(SACs)with maximal metalatom utilization,homogeneous and tailorable active sites have emerged as promising catalyst candidates,where the local coordination structures of the metal atoms in SACs largely determine the reaction kinetics.Previous design strategies of constructing strong metal-support interactions can stabilize the individual metal atoms in SACs,but present obstacles to provide a flexible manipulation platform for elaborately tailoring the coordination structures to achieve performance optimization towards a specifically targeted reaction.Here,for the proof-of-concept study,we report a novel design of SAC with iridium(Ir)single atoms supported on conjugated polymer,in which the adsorption energies of reaction intermediates on Ir atoms and the reaction kinetics towards acidic water oxidation can be readily optimized through modulating the formed cation-πinteractions that can be tailored by adjusting the molecular structures of conjugated polymers.This strategy establishes a general route to develop targeted SACs for various catalytic reactions.展开更多
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.52273067,52122303,52233006)the Fundamental Research Funds for the Central Universities(Grant No.2232023A-03)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23SG29).
文摘The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52203261)Natural Science Foundation of Jiangsu Province(BK20210474)the project of research on the industrial application of"controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(N0.CJGJZD20210408092400002).
文摘The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52161135302,22105087)the Postdoctoral Research Foundation of China(Grant No.2022M721360)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210446)。
文摘The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.
文摘Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution,and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third-party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.
基金the National Natural Science Foundation of China(52073053,52233006)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)+3 种基金Shanghai Rising-Star Program(21QA1400300)Innovation Program of Shanghai Municipal Education Commission(2021-01-0700-03-E00108)Science and Technology Commission of Shanghai Municipality(20520741100)China Postdoctoral Science Foundation(2021M690596)。
文摘Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/carbon nanotube/polyimide(gradient-conductive MXene/CNT/PI,GCMCP)aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection.The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly(amic acid)inks with different CNT contents,where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer.In addition,the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections.Consequently,the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency(68.2 dB)and low reflection(R=0.23).Furthermore,the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission,which shows a prosperous application prospect in defense industry and aerospace.
基金financially supported by the National Natural Science Foundation of China (21875033, 52161135302)the Research Foundation Flanders (G0F2322N)+4 种基金the China Postdoctoral Science Foundation (2022M711355)the Natural Science Foundation of Jiangsu Province (BK20221540)the Shanghai Scientific and Technological Innovation Project (18JC1410600)the Program of the Shanghai Academic Research Leader (17XD1400100)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2317)。
文摘Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK20210474)the National Natural Science Foundation of China (No.21938005)the Fundamental Research Funds for the Central Universities (No.JUSRP122013).
文摘Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond.
基金This work was supported by National Natural Science Foundation of China(No.51873198)the Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/1)the Royal Society(RGSyR1y211080)。
文摘Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector.In alkaline media,the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction(OER)performances.Surprisingly,the(Mo,Fe)P_(2)O_(7)@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm^(-2)in 1 mol L^(-1)KOH,respectively.Furthermore,the(Mo,Fe)P_(2)O_(7)@NF shows outstanding performances in alkaline salty water and 1 mol L^(-1)high purity KOH.A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER,which has a positive impact on both hydrogen energy application and environmental restoration.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 22105087)Natural Science Foundation of Jiangsu Province (Grant No. BK20210446)。
文摘The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.
基金supported by the Basic Research Program of Shenzhen(No.JCYJ20190812161409163)the Basic and Applied Basic Research Program of Guangdong Province(No.2019A1515110531)the SIAT Innovation Program for Excellent Young Researchers。
文摘Separators are indispensable components of modern electrochemical energy storage devices such as lithium-ion batteries(LIBs).They perform the critical function of physically separating the electrodes to prevent short-circuits while permitting the ions to pass through.While conventional separators using polypropylene(PP) and polyethylene(PE) are prone to shrinkage and melting at relatively high temperatures(150℃ or above) causing short circuits and thermal runaway,separators made of thermally stable polyimides(PIs) are electrochemically stable and resistant to high temperatures,and possess good mechanical strength-making them a promising solution to the safety concerns of LIBs.In this review,the research progress on PI separators for use in LIBs is summarized with a special focus on molecular design and microstructural control.In view of the significant progress in advanced chemistries beyond LIBs,recent advances in PI-based membranes for applications in lithium-sulfur,lithium-metal,and solid-state batteries are also reviewed.Finally,practical issues are also discussed along with their prospects.
基金supported by the National Natural Science Foundation of China(Nos.51873198,51503184 and 21703248)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20000000)+1 种基金the Engineering and Physical Sciences Research Council(EPSRC,EP/R023581/1)the RSC Mobility Grant(M19-7656)and the STFC Batteries Network(ST/R006873/1)。
文摘Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.
基金the financial support from the National Natural Science Foundation of China(21704014,21674019)Fundamental Research Funds for Central Universities(2232019A3-03)+2 种基金the Program of Shanghai Academic Research Leader(17XD1400100)the Shanghai Sailing Program(17YF1400200)the Shanghai Municipal Education Commission(17CG33).
文摘Two-dimensional graphene film exhibits sluggish ion diffusivity while three-dimensional(3D)graphene aerogel has low packing density and poor mechanical flexibility.Consequently,there is an urgent need for graphenebased film with both mechanical robustness and high specific capacitance.Here,we present an easy and scalable strategy for fabricating a free-standing flexible graphene-based aerogel film electrode with a two-layered structure,in which the top layer is an interconnected macroporous reduced graphene oxide/carbon nanotube(RGO/CNT)aerogel,and the bottom layer is a flexible electrospun polyacrylonitrile(PAN)nanofiber membrane.The porous 3D structure of the aerogel provides fast transport of electrolyte ions and electrons,while the nanofiber membrane provides both strong support for the aerogel and mechanical flexibility.Polypyrrole(PPy)can be uniformly loaded on RGO/CNT/PAN(RCP)composite aerogel film to provide pseudocapacitance,and nitrogen-doped RGO/CNT/carbon nanofiber(NRCC)aerogel film can be obtained by further pyrolysis.The resultant RCP@PPy-0.05//NRCC based asymmetric supercapacitor can have a maximum voltage of 1.7 V and a maximum energy density of 60.6 W h kg^(-1)at 850.2 W kg^(-1).This indicates that free-standing graphene-based aerogel film can be used in flexible supercapacitors.
基金support from the National Natural Science Foundation of China(No.22075042)Shanghai Rising-Star Program(No.22QA1400300)+3 种基金the Natural Science Foundation of Shanghai(No.20ZR1401400)the Shanghai Scientific and Technological Innovation Project(No.22520710100)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-03-E00108)the Fundamental Research Funds for the Central Universities,and the Donghua University(DHU)Distinguished Young Professor Program(No.LZB2021002).
文摘The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber(TiO_(2)@NCNF)composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host.Under the protection of the nanofiber walls,the uniformly dispersed TiO_(2) nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry.Besides,the mesoporous microstructure in the fibrous framework endows the TiO_(2)@NCNF host with strong physical reservation for sulfur and LiPSs,sufficient pathways for electron/ion transfer,and excellent endurance for volume change.As expected,the sulfur-loaded TiO_(2)@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan(capacity fading rate of 0.062%per cycle over 500 cycles)at 2.0 C.Furthermore,the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3805700)the National Natural Science Foundation of China(Nos.52073053 and 52233006)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)Shanghai Rising-Star Program(No.21QA1400300)Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-03-E00108)。
文摘Aerogels are widely used as thermal insulation materials because of their high porosity and low bulk density.However,the insulation performance of aerogels is limited to a narrow temperature range.Besides,the preparation of aerogel materials with precisely controlled and complex architectures is still challenging.Here,we report 3D printed polyimide/silica aerogel particle(PI/SAP)composite aerogels for thermal insulation in a wide range of temperature with customized applications.The printability and shape fidelity of 3D printed composite aerogels is improved by adding hydrophilic SAP as a rheology modifier.The resulting PI/SAP composite aerogel exhibits excellent flame-retardant properties and thermal insulation from-50℃ to 1300℃.Moreover,the PI/SAP composite aerogel with customized shape can be applied for battery insulation at subzero temperatures,promising to be used as customizable and stable insulating materials in a variety of complex and extreme applications.
基金financially supported by the National Natural Science Foundation of China(No.52273067)the Fundamental Research Funds for the Central Universities(No.2232023A-03)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.23SG29)。
文摘Passive daytime radiative cooling(PDRC)is an innovative and sustainable cooling technology that holds immense potential for addressing the energy crisis.Despite the numerous reports on radiative coolers,the design of a straightforward,efficient,and readily producible system remains a challenge.Herein,we present the development of a hierarchical aligned porous poly(vinylidene fluoride)(HAP-PVDF)film through a freeze-thaw-promoted nonsolvent-induced phase separation strategy.This film features oriented microporous arrays in conjunction with random nanopores,enabling efficient radiative cooling performance under direct sunlight conditions.The incorporation of both micro-and nano-pores in the HAP-PVDF film results in a remarkable solar reflectance of 97%and a sufficiently high infrared thermal emissivity of 96%,facilitating sub-environmental cooling at 18.3℃ on sunny days and 13.1℃ on cloudy days.Additionally,the HAP-PVDF film also exhibits exceptional flexibility and hydrophobicity.Theoretical calculations further confirm a radiative cooling power of 94.8 W·m^(-2)under a solar intensity of 1000W·m^(-2),demonstrating a performance comparable to the majority of reported radiative coolers.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20210474)the National Natural Science Foundation of China(NSFC,No.52203261)the project of research on the industrial application of “controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(No.CJGJZD20210408092400002)。
文摘Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through in-situ crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na+ transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na+ flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm^(-2), and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.
基金supported by the Singapore National Research Foundation Central Gap Fund(grant no.NRF2020NRF-CG001-010)Competitive Research Programme,Singapore(grant no.NRF-CRP26-2021-0002)+6 种基金National Research Foundation Investigatorship,Singapore(grant no.NRF-NRFI08-2022-0011)the Agency for Science,Technology,and Research in Advanced Manufacturing and Engineering(A*STAR AME)Individual Research Grant,Singapore(grant no.A20E5c0082)Institute for Digital Institute for Digital Molecular Analytics and Science,Singapore(IDMxS)J.R.T.C.acknowledges scholarship support from Nanyang Technological University,Singaporethe funding support from the Jiangsu Specially-Appointed Professor project(grant no.1046010241230830)the National Natural Science Foundation of China(NSFC,grant no.22108030)the Natural Science Foundation of Shanghai,China(grant no.22ZR1401500).
文摘Surface-enhanced Raman scattering spectroscopy(SERS)has emerged as a powerful analytical technique to enable nanoscale investigations of energy systems.This mini-review focuses on the applications of in-situ and operando SERS in energy-related research,highlighting its unique capabilities and significant contributions to understanding energy storage and conversion processes.We first introduce the fundamental principles of SERS,key SERS-derived techniques,and commonly employed platforms.Subsequently,we delve into the diverse applications of in-situ and operando SERS across various energy systems,encompassing photocatalytic and electrocatalytic systems,fuel cells,solar cells,and batteries.Finally,we conclude with our perspective on the current challenges and prospects in this area.We hope thismini-review serves as an essential overview to guide the design and implementation of in-situ and operando SERS studies of energy systems.
基金National Natural Science Foundation of China(No.52073053)Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)+2 种基金Shanghai Rising-Star Program(No.21QA1400300)Innovation Program of Shanghai Municipal Education Commission(No.2021–01–07–00–03-E00108)Fundamental Research Funds for the Central Universities(No.JUSRP123014).
文摘Personal daytime radiative cooling(PDRC)materials have high sunlight reflection and high selective emis-sivity to outer space in the main atmospheric window,demonstrating huge potential in energy-saving for sustainable development.Recently,polymer-based membranes for radiative cooling have been widely re-ported,due to their easy processing,low cost,and unique optical performance.However,the desired high sunlight reflectance of PDRC materials is easily dampened by environmental aging,high temperature,and ultraviolet(UV)irradiation,resulting in reduced cooling performance for most polymers,adverse to large-scale practical applications.In this work,we demonstrate a novel polyimide nanofiber(PINF)membrane with a fluorine-containing structure via typical electrospinning technology.The resultant PINF membrane exhibits high sunlight reflectance,UV resistance,and excellent thermal stability,rendering anti-aging day-time radiative cooling.The sunlight reflectance of PINF membranes could maintain constant in the aging test for continuous 720 h under outdoor solar irradiation,exhibiting durable and long-term personal day-time radiative cooling performance.
基金supported by National Natural Science Foundation of China(52103260,52373211,52161135302)Natural Science Foundation of Jiangsu Province(BK20210482,BK20221099)China Postdoctoral Science Foundation(2023T160274,2021M690067)。
文摘Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for the catalyst design,especially for those reactions where the noble metals deliver the best catalyzing performance.Single-atom catalysts(SACs)with maximal metalatom utilization,homogeneous and tailorable active sites have emerged as promising catalyst candidates,where the local coordination structures of the metal atoms in SACs largely determine the reaction kinetics.Previous design strategies of constructing strong metal-support interactions can stabilize the individual metal atoms in SACs,but present obstacles to provide a flexible manipulation platform for elaborately tailoring the coordination structures to achieve performance optimization towards a specifically targeted reaction.Here,for the proof-of-concept study,we report a novel design of SAC with iridium(Ir)single atoms supported on conjugated polymer,in which the adsorption energies of reaction intermediates on Ir atoms and the reaction kinetics towards acidic water oxidation can be readily optimized through modulating the formed cation-πinteractions that can be tailored by adjusting the molecular structures of conjugated polymers.This strategy establishes a general route to develop targeted SACs for various catalytic reactions.