Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity i...Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity in navigation strategies,with considerable differences even within the same taxa and among individuals from the same population.The highly conserved iron and iron-sulfur cluster binding magnetoreceptor(MagR)protein is suggested to enable animals,including birds,to detect the geomagnetic field and navigate accordingly.Notably,MagR is also implicated in other functions,such as electron transfer and biogenesis of iron-sulfur clusters,raising the question of whether variability exists in its biochemical and biophysical features among species,particularly birds.In the current study,we conducted a comparative analysis of MagR from two different bird species,including the migratory European robin(Erithacus rubecula)and the homing pigeon(Columba livia).Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species,with only three sequence variations.Nevertheless,two of these variations underpinned significant differences in metal binding capacity,oligomeric state,and magnetic properties.These findings offer compelling evidence for the marked differences in MagR between the two avian species,potentially explaining how a highly conserved protein can mediate such diverse functions.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotar...This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.展开更多
The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnet...The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field.A highly conserved ironsulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor(MagR).Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception.In the current study,we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons,an avian species that relies on the geomagnetic field for navigation and homing.Pigeon MagR showed significantly higher total iron content from both iron-and ironsulfur binding.Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding,and its mutation abolished iron-binding capacity of the protein.Surprisingly,both iron binding and iron-sulfur binding demonstrated synergistic effects,and thus appear to be integral and indispensable to pigeon MagR magnetism.These results not only extend our current understanding of the origin and complexity of MagR magnetism,but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.展开更多
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage i...The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.展开更多
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe...Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.展开更多
In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave...In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave frequency and temperature on the dielectric properties of synthetic ores(metal mineral and quartz)were studied.Microwave heating tests were carried out on three types of natural ores(Hongtoushan copper ore,Sishanling iron ore and Dandong gold ore)with significant differences in metal mineral contents.The test results showed that under microwave irradiation,the stronger the electrical conductivity of the metal minerals,the smaller the penetration depth in synthetic ore.For those metal minerals with lower electrical conductivity,the microwave absorption coefficient of the synthetic samples increases with increasing metal mineral content.For those metal minerals with higher electrical conductivity,the microwave absorption coefficient of the samples first increases and then decreases as the metal mineral content increases.When the metal minerals are distributed in layers,the penetration depth is much less than that given a uniform distribution.The penetration depth in the sample at microwave frequency of 915 MHz is greater than that at 2.45 GHz.The higher the electrical conductivity of metal minerals used in synthetic ores,the higher the high-temperature sensitivity of electromagnetic shielding coefficient(0.C-500.C).The Hongtoushan copper ore with high metal mineral content exhibits obvious size effect.The effects of ore structure and crystal particle size on the distribution characteristics of microcracks were discussed.Based on the test results,a quantitative prediction model of microwave sensitivity of ore was proposed,which provides guidance for the prediction of ore heating effect and the selection of microwave heating sequence of ore.展开更多
The morphology is the consequence of evolution and adaptation.Escherichia coli is rod-shaped bacillus with regular dimension of about 1.5μm long and 0.5μm wide.Many shape-related genes have been identified and used ...The morphology is the consequence of evolution and adaptation.Escherichia coli is rod-shaped bacillus with regular dimension of about 1.5μm long and 0.5μm wide.Many shape-related genes have been identified and used in morphology engineering of this bacteria.However,little is known about if specific metabolism and metal irons could modulate bacteria morphology.Here in this study,we discovered filamentous shape change of E.coli cells overexpressing pigeon MagR,a putative magnetoreceptor and extremely conserved iron-sulfur protein.Comparative transcriptomic analysis strongly suggested that the iron metabolism change and iron accumulation due to the overproduction of MagR was the key to the morphological change.This model was further validated,and filamentous morphological change was also achieved by supplement E.coli cells with iron in culture medium or by increase the iron uptake genes such as entB and fepA.Our study extended our understanding of morphology regulation of bacteria,and may also serves as a prototype of morphology engineering by modulating the iron metabolism.展开更多
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity in navigation strategies,with considerable differences even within the same taxa and among individuals from the same population.The highly conserved iron and iron-sulfur cluster binding magnetoreceptor(MagR)protein is suggested to enable animals,including birds,to detect the geomagnetic field and navigate accordingly.Notably,MagR is also implicated in other functions,such as electron transfer and biogenesis of iron-sulfur clusters,raising the question of whether variability exists in its biochemical and biophysical features among species,particularly birds.In the current study,we conducted a comparative analysis of MagR from two different bird species,including the migratory European robin(Erithacus rubecula)and the homing pigeon(Columba livia).Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species,with only three sequence variations.Nevertheless,two of these variations underpinned significant differences in metal binding capacity,oligomeric state,and magnetic properties.These findings offer compelling evidence for the marked differences in MagR between the two avian species,potentially explaining how a highly conserved protein can mediate such diverse functions.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金support from the National Natural Science Foundation of China(Grant No.41827806)Liaoning Provincial Science and Technology Program(Grant No.2022JH2/101300109).
文摘This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.
基金supported by the National Natural Science Foundation of China(31640001 to C.X.,U21A20148 to X.Z.and C.X.)the Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.)。
文摘The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field.A highly conserved ironsulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor(MagR).Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception.In the current study,we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons,an avian species that relies on the geomagnetic field for navigation and homing.Pigeon MagR showed significantly higher total iron content from both iron-and ironsulfur binding.Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding,and its mutation abolished iron-binding capacity of the protein.Surprisingly,both iron binding and iron-sulfur binding demonstrated synergistic effects,and thus appear to be integral and indispensable to pigeon MagR magnetism.These results not only extend our current understanding of the origin and complexity of MagR magnetism,but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
基金This research was supported by the National Natural Science Foundation of China(Nos.51704211 and 51879184).
文摘The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.
基金support from the Na-tional Natural Science Foundation of China(Grant No.41827806)the liaoning Revitalization Talent Program of China(Grant No.XLYCYSZX1902).
文摘Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)supported by Liaoning Revitalization Talents Program(Grant No.XLYC1801002)。
文摘In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave frequency and temperature on the dielectric properties of synthetic ores(metal mineral and quartz)were studied.Microwave heating tests were carried out on three types of natural ores(Hongtoushan copper ore,Sishanling iron ore and Dandong gold ore)with significant differences in metal mineral contents.The test results showed that under microwave irradiation,the stronger the electrical conductivity of the metal minerals,the smaller the penetration depth in synthetic ore.For those metal minerals with lower electrical conductivity,the microwave absorption coefficient of the synthetic samples increases with increasing metal mineral content.For those metal minerals with higher electrical conductivity,the microwave absorption coefficient of the samples first increases and then decreases as the metal mineral content increases.When the metal minerals are distributed in layers,the penetration depth is much less than that given a uniform distribution.The penetration depth in the sample at microwave frequency of 915 MHz is greater than that at 2.45 GHz.The higher the electrical conductivity of metal minerals used in synthetic ores,the higher the high-temperature sensitivity of electromagnetic shielding coefficient(0.C-500.C).The Hongtoushan copper ore with high metal mineral content exhibits obvious size effect.The effects of ore structure and crystal particle size on the distribution characteristics of microcracks were discussed.Based on the test results,a quantitative prediction model of microwave sensitivity of ore was proposed,which provides guidance for the prediction of ore heating effect and the selection of microwave heating sequence of ore.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘The morphology is the consequence of evolution and adaptation.Escherichia coli is rod-shaped bacillus with regular dimension of about 1.5μm long and 0.5μm wide.Many shape-related genes have been identified and used in morphology engineering of this bacteria.However,little is known about if specific metabolism and metal irons could modulate bacteria morphology.Here in this study,we discovered filamentous shape change of E.coli cells overexpressing pigeon MagR,a putative magnetoreceptor and extremely conserved iron-sulfur protein.Comparative transcriptomic analysis strongly suggested that the iron metabolism change and iron accumulation due to the overproduction of MagR was the key to the morphological change.This model was further validated,and filamentous morphological change was also achieved by supplement E.coli cells with iron in culture medium or by increase the iron uptake genes such as entB and fepA.Our study extended our understanding of morphology regulation of bacteria,and may also serves as a prototype of morphology engineering by modulating the iron metabolism.