2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o...2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.展开更多
Developing an efficient and easily available catalyst for the selective conversion of biomass-derived 5-hydroxymethylfurfural(HMF)into furan-2,5-dimethylcarboxylate(FDMC),a valuable biomass-based monomer,remains a hig...Developing an efficient and easily available catalyst for the selective conversion of biomass-derived 5-hydroxymethylfurfural(HMF)into furan-2,5-dimethylcarboxylate(FDMC),a valuable biomass-based monomer,remains a high demand but formidable challenge.Herein,a facile strategy for the synthesis of N-doped carbon-supported Co/Fe bimetallic catalyst(CoFe-NC)was developed,which provided an outstanding FDMC yield of 93%in a batch reactor(base-free,80℃,2 bar O_(2),4 h).Interestingly,CoFe-NC also gave a high FDMC yield of 91%under continuous-flow conditions for 80 h(5 bar O_(2),80℃,GHSV 1320 h^(-1),LHSV 0.6 h^(-1),base-free).Notably,it is the first time that a non-noble catalyst gave such a high FDMC yield under continuous-flow conditions.The introduction of Fe could greatly improve both the electron intensity of Co-N_(x)species and basicity of the catalyst,which endowed CoFe-NC with improved O_(2)activation capacity and enhanced dehydrogenation activity for the oxidation-esterification of HMF.This work delineates the efficient strategy on the construction of N-doped carbon-supported non-noble catalyst,which might open a new avenue for developing highly efficient catalyst for FDMC production.展开更多
Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha...Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen(N)productivity in a double rice cropping system in 2017.In particular,treatment combinations were as follows:winter fallow rice-rice(WF-R-R),milk vetch rice-rice(MV-R-R),oil-seed rape rice-rice(R-R-R)and potato crop rice-rice(P-R-R).Results revealed that green manure significantly(p≤0.05)improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%,total nitrogen(N)by 28.41%,available N by 26.64%,total phosphorus(P)by 37.77%,available P by 20.48%and available potassium(K)by 33.10%than WF-R-R,however pH was reduced by 3.30%across the seasons.Similarly,net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order:P-R-R>R-R-R>MV-R-R>WF-R-R.Furthermore,the total leaf dry matter transport(t ha−1)for the P-R-R in both seasons was significantly higher by an average 11.2%,7.2%and 36%than MV-R-R,R-R-R,and WF-R-R,respectively.In addition,net total nitrogen accumulation(kg ha−1)was found higher in green manure applied plots compared to the control.Yield and yield attributed traits were observed maximum in green manure applied plots,with treatments ranking as follows:P-R-R>R-R-R>MV-R-R>WF-R-R.Thus,results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.展开更多
The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymeth...The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymethyl-2-furancarboxylic acid(HMFCA),formyl 2-furancarboxylic acid(FFCA),2,5-furandicarboxylic acid(FDCA) and furan-2,5-dimethylcarboxylate(FDMC).These products have been extensively employed to fabricate novel polymers,pharmaceuticals,sustainable dyes and many other value-added fine chemicals.The heart of the developed HMF oxidation processes is always the catalyst.In this regard,this review comprehensively summarized the established heterogeneous catalyst design strategy for the selective oxidation of HMF via thermo-catalysis.Particular attention has been focused on the reaction mechanism of HMF oxidation over different catalysts as well as enhancing the catalytic performance of the catalyst through manipulating the properties of the support and fabricating of multi-component metal nano-particles and oxides.The current challenges and possible research directions for the catalytic oxidation of HMF in the future are also discussed.展开更多
Orbital venous malformation (OVM) is a congenital vascular disease. As a common type of vascular malformation in the orbit, OVM may result in vision deterioration and cosmetic defect. Classification of orbital vascula...Orbital venous malformation (OVM) is a congenital vascular disease. As a common type of vascular malformation in the orbit, OVM may result in vision deterioration and cosmetic defect. Classification of orbital vascular malformations, especially OVMs, is carried out on the basis of different categories, such as angiogenesis, hemodynamics, and locations. Management of OVM is complicated and challenging. Treatment approaches include sclerotherapy, laser therapy, embolization, surgical resection, and radiotherapy. A satisfactory outcome can be achieved only by selecting the appropriate treatment according to lesion characteristics and following the sequential multi-method treatment strategy. This article summarizes the current classification and treatment advances in OVM.展开更多
Purpose:To investigate the role of N6-methyladenosine(m^(6)A)RNA modification in the pathogenesis of Graves'ophthalmopathy(GO).Methods:Surgically excised extraocular muscles from 7 patients with GO and 5 subjects ...Purpose:To investigate the role of N6-methyladenosine(m^(6)A)RNA modification in the pathogenesis of Graves'ophthalmopathy(GO).Methods:Surgically excised extraocular muscles from 7 patients with GO and 5 subjects without GO were used.The global m^(6)A levels in the specimens were determined using an m^(6)A RNA methylation quantification kit.RNA sequencing(RNA-seq)was used to analyze the molecules involved in the regulation of m^(6)A RNA methylation and the differential expression of mRNAs between the two groups(4 eyes,respectively).The expression of m^(6)A RNA modification genes was evaluated by real-time PCR.The functional implications of the gene alterations between the GO and control specimens were determined by Gene Ontology analysis.Results:The m^(6)A level was significantly increased in the specimens of GO patients compared to the control specimens(P<0.05).The expression of m^(6)A methylation regulators,such as WT1 associated protein(WTAP),alkylation repair homolog protein 5(ALKBH5),E74 like ETS transcription factor 3(ELF3),YTH N6-methyladenosine RNA binding protein 2(YTHDF2),YTHDF3 and YTH domain containing 2(YTHDC2),was significantly upregulated(P<0.05).Gene Ontology enrichment analysis showed that the most highly upregulated genes and biological pathways were related to the immune response and inflammatory processes such as lymphocyte activation,leukocyte differentiation,cytokine production and cytokine-mediated signaling pathways.Conclusions:Our results suggest that m^(6)A methylation may play a critical role in the pathogenesis of GO and that targeting genes that regulate m^(6)A methylation may provide a new therapeutic approach for GO.展开更多
基金the funding supported by the National Natural Science Foundation of China(22378338,22078275)the Natural Science Foundation of Fujian Province of China(2021H0009)the Fundamental Research Funds for the Central Universities(20720220065)。
文摘2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.
基金funding supported by the National Natural Science Foundation of China(22078275)the Key-Area Research and Development Program of Guangdong Province(2020B0101070001)+1 种基金the Natural Science Foundation of Fujian Province of China(2021H0009)the Petro China Innovation Foundation(2019D-5007-0413)。
文摘Developing an efficient and easily available catalyst for the selective conversion of biomass-derived 5-hydroxymethylfurfural(HMF)into furan-2,5-dimethylcarboxylate(FDMC),a valuable biomass-based monomer,remains a high demand but formidable challenge.Herein,a facile strategy for the synthesis of N-doped carbon-supported Co/Fe bimetallic catalyst(CoFe-NC)was developed,which provided an outstanding FDMC yield of 93%in a batch reactor(base-free,80℃,2 bar O_(2),4 h).Interestingly,CoFe-NC also gave a high FDMC yield of 91%under continuous-flow conditions for 80 h(5 bar O_(2),80℃,GHSV 1320 h^(-1),LHSV 0.6 h^(-1),base-free).Notably,it is the first time that a non-noble catalyst gave such a high FDMC yield under continuous-flow conditions.The introduction of Fe could greatly improve both the electron intensity of Co-N_(x)species and basicity of the catalyst,which endowed CoFe-NC with improved O_(2)activation capacity and enhanced dehydrogenation activity for the oxidation-esterification of HMF.This work delineates the efficient strategy on the construction of N-doped carbon-supported non-noble catalyst,which might open a new avenue for developing highly efficient catalyst for FDMC production.
基金This research was financially supported by the National Key Research and Development Project(2018YFD20030503)of China.
文摘Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen(N)productivity in a double rice cropping system in 2017.In particular,treatment combinations were as follows:winter fallow rice-rice(WF-R-R),milk vetch rice-rice(MV-R-R),oil-seed rape rice-rice(R-R-R)and potato crop rice-rice(P-R-R).Results revealed that green manure significantly(p≤0.05)improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%,total nitrogen(N)by 28.41%,available N by 26.64%,total phosphorus(P)by 37.77%,available P by 20.48%and available potassium(K)by 33.10%than WF-R-R,however pH was reduced by 3.30%across the seasons.Similarly,net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order:P-R-R>R-R-R>MV-R-R>WF-R-R.Furthermore,the total leaf dry matter transport(t ha−1)for the P-R-R in both seasons was significantly higher by an average 11.2%,7.2%and 36%than MV-R-R,R-R-R,and WF-R-R,respectively.In addition,net total nitrogen accumulation(kg ha−1)was found higher in green manure applied plots compared to the control.Yield and yield attributed traits were observed maximum in green manure applied plots,with treatments ranking as follows:P-R-R>R-R-R>MV-R-R>WF-R-R.Thus,results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.
基金funding supported by the National Natural Science Foundation of China (Grant Nos. 2207827521978246)+3 种基金the National Key Research and Development Program of China (Grant No. 2019YFB1503903)the Key Area Research and Development Program of Guangdong Province (Grant No. 2020B0101070001)the Fundamental Research Funds for the Central Universities (Grant No. 20720190014)PetroChina Innovation Foundation (2019D5007-0413)。
文摘The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymethyl-2-furancarboxylic acid(HMFCA),formyl 2-furancarboxylic acid(FFCA),2,5-furandicarboxylic acid(FDCA) and furan-2,5-dimethylcarboxylate(FDMC).These products have been extensively employed to fabricate novel polymers,pharmaceuticals,sustainable dyes and many other value-added fine chemicals.The heart of the developed HMF oxidation processes is always the catalyst.In this regard,this review comprehensively summarized the established heterogeneous catalyst design strategy for the selective oxidation of HMF via thermo-catalysis.Particular attention has been focused on the reaction mechanism of HMF oxidation over different catalysts as well as enhancing the catalytic performance of the catalyst through manipulating the properties of the support and fabricating of multi-component metal nano-particles and oxides.The current challenges and possible research directions for the catalytic oxidation of HMF in the future are also discussed.
文摘Orbital venous malformation (OVM) is a congenital vascular disease. As a common type of vascular malformation in the orbit, OVM may result in vision deterioration and cosmetic defect. Classification of orbital vascular malformations, especially OVMs, is carried out on the basis of different categories, such as angiogenesis, hemodynamics, and locations. Management of OVM is complicated and challenging. Treatment approaches include sclerotherapy, laser therapy, embolization, surgical resection, and radiotherapy. A satisfactory outcome can be achieved only by selecting the appropriate treatment according to lesion characteristics and following the sequential multi-method treatment strategy. This article summarizes the current classification and treatment advances in OVM.
基金This work was supported by grants from the National Natural Science Foundation of China(grant nos.81770943 and 81873681)the Beijing Municipal Science and Technology Commission(Capital Char-acteristic Clinic Applied Research Project,Z161100000516037).
文摘Purpose:To investigate the role of N6-methyladenosine(m^(6)A)RNA modification in the pathogenesis of Graves'ophthalmopathy(GO).Methods:Surgically excised extraocular muscles from 7 patients with GO and 5 subjects without GO were used.The global m^(6)A levels in the specimens were determined using an m^(6)A RNA methylation quantification kit.RNA sequencing(RNA-seq)was used to analyze the molecules involved in the regulation of m^(6)A RNA methylation and the differential expression of mRNAs between the two groups(4 eyes,respectively).The expression of m^(6)A RNA modification genes was evaluated by real-time PCR.The functional implications of the gene alterations between the GO and control specimens were determined by Gene Ontology analysis.Results:The m^(6)A level was significantly increased in the specimens of GO patients compared to the control specimens(P<0.05).The expression of m^(6)A methylation regulators,such as WT1 associated protein(WTAP),alkylation repair homolog protein 5(ALKBH5),E74 like ETS transcription factor 3(ELF3),YTH N6-methyladenosine RNA binding protein 2(YTHDF2),YTHDF3 and YTH domain containing 2(YTHDC2),was significantly upregulated(P<0.05).Gene Ontology enrichment analysis showed that the most highly upregulated genes and biological pathways were related to the immune response and inflammatory processes such as lymphocyte activation,leukocyte differentiation,cytokine production and cytokine-mediated signaling pathways.Conclusions:Our results suggest that m^(6)A methylation may play a critical role in the pathogenesis of GO and that targeting genes that regulate m^(6)A methylation may provide a new therapeutic approach for GO.