Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two ...Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two which are universally suitable for the current development of the theory of random conjugate spaces. In this process, we also obtain a somewhat surprising and crucial result: if the base (Ω,F, P) of a random normed module is nonatomic then the random normed module is a totally disconnected topological space when it is endowed with the locally L0-convex topology.展开更多
Let (Ω, F, P) be a probability space and L0(F,R) the algebra of equivalence classes of real- valued random variables on (Ω, F, P). When L0(F,R) is endowed with the topology of convergence in probability, we ...Let (Ω, F, P) be a probability space and L0(F,R) the algebra of equivalence classes of real- valued random variables on (Ω, F, P). When L0(F,R) is endowed with the topology of convergence in probability, we prove an intermediate value theorem for a continuous local function from L0(F, R) to L0(F,R). As applications of this theorem, we first give several useful expressions for modulus of random convexity, then we prove that a complete random normed module (S, ||·||) is random uniformly convex iff LP(S) is uniformly convex for each fixed positive number p such that 1 〈 p 〈 +∞.展开更多
In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real ...In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Keywords Martingale space, BMO space, Lorentz space, real interpolation, function parameter展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10871016)
文摘Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two which are universally suitable for the current development of the theory of random conjugate spaces. In this process, we also obtain a somewhat surprising and crucial result: if the base (Ω,F, P) of a random normed module is nonatomic then the random normed module is a totally disconnected topological space when it is endowed with the locally L0-convex topology.
基金Supported by National Natural Science Foundation of China (Grant No. 10871016)
文摘Let (Ω, F, P) be a probability space and L0(F,R) the algebra of equivalence classes of real- valued random variables on (Ω, F, P). When L0(F,R) is endowed with the topology of convergence in probability, we prove an intermediate value theorem for a continuous local function from L0(F, R) to L0(F,R). As applications of this theorem, we first give several useful expressions for modulus of random convexity, then we prove that a complete random normed module (S, ||·||) is random uniformly convex iff LP(S) is uniformly convex for each fixed positive number p such that 1 〈 p 〈 +∞.
基金Supported by National Natural Science Foundation of China(Grant No.10871016)
文摘In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Keywords Martingale space, BMO space, Lorentz space, real interpolation, function parameter