The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we sugges...The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleo- foreland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.展开更多
Ophiolites represent fragments of ancient oceanic lithosphere,tectonically incorporated into continental margins during plate subduction or remained in the subduction–collisional orogenic belt.They provide
Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of exist...Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of existing reconstructions of lake depression development and changes in the hydrology system during the Khorgo volcanic activation and the Holocene environmental change.A depression of the Terkhiin Tsagaan Lake is formed by a lava flow barrier from the Khorgo volcano.However,the Khorgo volcanic eruption and the lake depression that could shape a large lake have arisen instead from a fault.The morphometric analysis and field measurements indicate that the derivation of the Terkhiin Tsagaan Lake depression and Khorgo volcano may have evolved from movement on a sinistral strike-slip fault,which is about 70 km long.The southern mountains and rivers were displaced from northwest to southeast along the Terkh Fault.The offset along Terkh Fault is 4.02-5.28 km in the depression of the Terkhiin Tsagaan Lake.After movement,a wide valley of the Terkh River developed in the present landscape.The active Khorgo Volcano formed along the Khorgo Fault.The Terkhiin Tsagaan Lake is formed by blocked water from the PaleoTerkh River after lava damming from the Khorgo Volcano.The initial paleo-lake area was about 195.7km^(2),which was three times larger than the modern lake.The current water volume of the Terkhiin Tsagaan Lake is 0.351 km^(3) while the volume of the paleo-lake was 2.248 km^(3).Based on this volume indicator the paleo-lake was 6.4 times larger than the current lake.Overflowing water from the lake depression formed the Suman River by a drying canyon through the lava plateau,but the canyon is along the Terkh Fault.Changes in the water volume of Terkhiin Tsagaan Lake and erosion of Suman River canyon are inversely related to each other.We present the morphometric relationships between the lava plateau of Khorgo Volcano and development of Terkhiin Tsagaan Lake depression.展开更多
The Proterozoic Miaowan Ophiolite Complex is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze Craton(Peng et al.,2012).The rocks of this complex consist of,from bottom
Fabrics of an Archean mélange belt in the Zanhuang Complex of the North China Craton(NCC)were intruded by mafic dikes and a granite pluton(Deng et al.,2013;Wang et al.,2013).Igneous zircons from an undefomed
Destruction of the North China Craton has caused extensive concern on its multiple potential mechanisms including thermal erosion,chemical erosion and delamination.It is widely accepted that thinning of the
The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
When plate tectonics emerged and how it has evolved over Earth history are two of the most fundamental challenges in Earth Sciences.These questions are tackled using a holistic approach to analyze tectonic styles in t...When plate tectonics emerged and how it has evolved over Earth history are two of the most fundamental challenges in Earth Sciences.These questions are tackled using a holistic approach to analyze tectonic styles in the history of Earth,giving rise to the interpretation of two styles of plate tectonics since the Archean.In these interpretations,there are different styles of deformation and metamorphism between early times dominated by warm subduction,and later times preferring cold subduction.The two styles of plate tectonics are recorded by different properties of regional metamorphism at convergent plate boundaries,which are linked to the differences in mantle temperature between the Archean and Phanerozoic.A transition to modern plate tectonics is recorded by the signature of blueschist facies metamorphism developed in the Neoproterozoic.This is consistent with geological evidence for the operation of ancient plate tectonics since the early Archean.The temporal cooling of the mantle explains the geochemical trends of mantle-derived melts,the likely change from numerous small plates to fewer but larger plates,changes in thickness and preservation of oceanic crust and lithosphere in accretionary and collisional orogens,and led to the oxygenation of the surface environment providing the environments needed to foster life.展开更多
Earth’s continental crust has grown and been recycled throughout geologic history along convergent plate margins.The main locus of continental crustal growth is in intra-oceanic and continental-margin arc systems in ...Earth’s continental crust has grown and been recycled throughout geologic history along convergent plate margins.The main locus of continental crustal growth is in intra-oceanic and continental-margin arc systems in Archean time. In arc systems, oceanic lithosphere is subducted to the deeper mantle, and together with its overlying sedimentary sequence is in some cases off-scraped to form accretionary prisms. Fluids are released from the subducting slab to chemically react with the mantle wedge, forming mafic-ultramafic metasomatites, whose partial melting generates mafic melts that rise up to form arcs. In intraoceanic arcs, they produce dominantly basaltic lavas, with a mid-crust that includes variably-developed vertically-walled intermediate plutons and higher-level dikes and sills. In continental-margin arcs, different petrogenetic processes cause assimilation and fractionation of basaltic magmas, partial melting/reworking of juvenile basaltic rocks, and mixing of mantle-and crust-derived melts, so they produce andesitic calc-alkaline melts but still have a mid-crust dominated by vertically-walled felsic plutons, which form 3-D dome-and-basin structures, akin to those in some Archean terranes such as parts of the Pilbara and Zimbabwe cratons. Notably, the continental crust of Archean times is dominated by tonalite-trondhjemite-granodiorite(TTG)plutons, similar to that of the mid-crust of these arc systems, suggesting that early continental crust may have formed largely by the amalgamation of multiple arc systems. The patterns of magmatism, in terms of petrogenesis, rock types, duration of magmatic and accretionary events, and the spatial scales of deformation and magmatism have remained essentially the same throughout geological history, demonstrating that plate tectonic processes characterized by subduction and arc magmatism have been in operation at least as long as recorded by the preserved geologic record, since the Eoarchean. However, the early Earth was dominated by accretionary orogens and oceanic arcs, that gradually grew thicker through multiple accretion events to form early continental-margin arcs by 3.5–3.2 Ga, and accretionary orogens. Slab melting and warmer metamorphism was more common in Archean arc systems due to higher mantle temperatures. These early arcs were further amalgamated into large emergent continents by ~3.2–3.0 Ga, allowing large-scale processes such as lithospheric rifting and continental collisions, and the start of the supercontinent cycle. Further work should apply the null hypothesis, that plate tectonics explains the geologic record, to test for differences in the style of plate tectonics and magmatism through time, based on the fundamental difference in planetary heat production and the evolution of rotational dynamics of the Earth-Sun-Moon system.展开更多
基金the National Natural Science Foundation of China (Nos. 40573002, 40773030, 40373005) ; Sichuan Province Science Foundation (Nos. 03ZQ026-046, 05JY029-088-2).
文摘The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleo- foreland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.
基金supported by the fundings (No. 41272242) from National Natural Science Foundation of China
文摘Ophiolites represent fragments of ancient oceanic lithosphere,tectonically incorporated into continental margins during plate subduction or remained in the subduction–collisional orogenic belt.They provide
基金funded by the National University of Mongolia(P2021-4178)funded by the National Natural Science Foundation of China(nos.41961144020,91755213,41967052)+1 种基金additional funding by 111 Project(BP0719022)MOST Special Fund MSFGPMR02-3 from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Wuhan),China。
文摘Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of existing reconstructions of lake depression development and changes in the hydrology system during the Khorgo volcanic activation and the Holocene environmental change.A depression of the Terkhiin Tsagaan Lake is formed by a lava flow barrier from the Khorgo volcano.However,the Khorgo volcanic eruption and the lake depression that could shape a large lake have arisen instead from a fault.The morphometric analysis and field measurements indicate that the derivation of the Terkhiin Tsagaan Lake depression and Khorgo volcano may have evolved from movement on a sinistral strike-slip fault,which is about 70 km long.The southern mountains and rivers were displaced from northwest to southeast along the Terkh Fault.The offset along Terkh Fault is 4.02-5.28 km in the depression of the Terkhiin Tsagaan Lake.After movement,a wide valley of the Terkh River developed in the present landscape.The active Khorgo Volcano formed along the Khorgo Fault.The Terkhiin Tsagaan Lake is formed by blocked water from the PaleoTerkh River after lava damming from the Khorgo Volcano.The initial paleo-lake area was about 195.7km^(2),which was three times larger than the modern lake.The current water volume of the Terkhiin Tsagaan Lake is 0.351 km^(3) while the volume of the paleo-lake was 2.248 km^(3).Based on this volume indicator the paleo-lake was 6.4 times larger than the current lake.Overflowing water from the lake depression formed the Suman River by a drying canyon through the lava plateau,but the canyon is along the Terkh Fault.Changes in the water volume of Terkhiin Tsagaan Lake and erosion of Suman River canyon are inversely related to each other.We present the morphometric relationships between the lava plateau of Khorgo Volcano and development of Terkhiin Tsagaan Lake depression.
文摘The Proterozoic Miaowan Ophiolite Complex is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze Craton(Peng et al.,2012).The rocks of this complex consist of,from bottom
文摘Fabrics of an Archean mélange belt in the Zanhuang Complex of the North China Craton(NCC)were intruded by mafic dikes and a granite pluton(Deng et al.,2013;Wang et al.,2013).Igneous zircons from an undefomed
文摘Destruction of the North China Craton has caused extensive concern on its multiple potential mechanisms including thermal erosion,chemical erosion and delamination.It is widely accepted that thinning of the
文摘The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
基金supported by the National Natural Science Foundation of China(Grant Nos.41572203,41890834,&41961144020)the 111 Project from the Ministry of Education of China(Grant No.BP0719022)+1 种基金the MOST Special Fund(Grant No.MSFGPMR02-3)the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan,and the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC017).
文摘When plate tectonics emerged and how it has evolved over Earth history are two of the most fundamental challenges in Earth Sciences.These questions are tackled using a holistic approach to analyze tectonic styles in the history of Earth,giving rise to the interpretation of two styles of plate tectonics since the Archean.In these interpretations,there are different styles of deformation and metamorphism between early times dominated by warm subduction,and later times preferring cold subduction.The two styles of plate tectonics are recorded by different properties of regional metamorphism at convergent plate boundaries,which are linked to the differences in mantle temperature between the Archean and Phanerozoic.A transition to modern plate tectonics is recorded by the signature of blueschist facies metamorphism developed in the Neoproterozoic.This is consistent with geological evidence for the operation of ancient plate tectonics since the early Archean.The temporal cooling of the mantle explains the geochemical trends of mantle-derived melts,the likely change from numerous small plates to fewer but larger plates,changes in thickness and preservation of oceanic crust and lithosphere in accretionary and collisional orogens,and led to the oxygenation of the surface environment providing the environments needed to foster life.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91755213, 41890834, 41888101, 41961144020, 42072228, and 41602234)the Chinese Ministry of Education (Grant No. BP0719022)+2 种基金the Chinese Academy of Sciences (Grant No. QYZDY-SSWDQC017)the MOST Special Fund (Grant No. MSF-GPMR02-3)the Open Fund of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (Grant No. GPMR201704)。
文摘Earth’s continental crust has grown and been recycled throughout geologic history along convergent plate margins.The main locus of continental crustal growth is in intra-oceanic and continental-margin arc systems in Archean time. In arc systems, oceanic lithosphere is subducted to the deeper mantle, and together with its overlying sedimentary sequence is in some cases off-scraped to form accretionary prisms. Fluids are released from the subducting slab to chemically react with the mantle wedge, forming mafic-ultramafic metasomatites, whose partial melting generates mafic melts that rise up to form arcs. In intraoceanic arcs, they produce dominantly basaltic lavas, with a mid-crust that includes variably-developed vertically-walled intermediate plutons and higher-level dikes and sills. In continental-margin arcs, different petrogenetic processes cause assimilation and fractionation of basaltic magmas, partial melting/reworking of juvenile basaltic rocks, and mixing of mantle-and crust-derived melts, so they produce andesitic calc-alkaline melts but still have a mid-crust dominated by vertically-walled felsic plutons, which form 3-D dome-and-basin structures, akin to those in some Archean terranes such as parts of the Pilbara and Zimbabwe cratons. Notably, the continental crust of Archean times is dominated by tonalite-trondhjemite-granodiorite(TTG)plutons, similar to that of the mid-crust of these arc systems, suggesting that early continental crust may have formed largely by the amalgamation of multiple arc systems. The patterns of magmatism, in terms of petrogenesis, rock types, duration of magmatic and accretionary events, and the spatial scales of deformation and magmatism have remained essentially the same throughout geological history, demonstrating that plate tectonic processes characterized by subduction and arc magmatism have been in operation at least as long as recorded by the preserved geologic record, since the Eoarchean. However, the early Earth was dominated by accretionary orogens and oceanic arcs, that gradually grew thicker through multiple accretion events to form early continental-margin arcs by 3.5–3.2 Ga, and accretionary orogens. Slab melting and warmer metamorphism was more common in Archean arc systems due to higher mantle temperatures. These early arcs were further amalgamated into large emergent continents by ~3.2–3.0 Ga, allowing large-scale processes such as lithospheric rifting and continental collisions, and the start of the supercontinent cycle. Further work should apply the null hypothesis, that plate tectonics explains the geologic record, to test for differences in the style of plate tectonics and magmatism through time, based on the fundamental difference in planetary heat production and the evolution of rotational dynamics of the Earth-Sun-Moon system.