Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like...Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like hollow carbon sphere is well designed on octahedral and tetrahedral sites.The robust FexCo9−xS8‐NHCS‐V with iron replacing at the octahedron possesses prolonged metal sulfur bond and exhibits excellent bifunctional electrocatalytic performance towards oxygen reduction reaction(ORR,E_(1/2)=0.80 V vs.RHE)and excellent oxygen evolution reaction(OER,E_(j=10)=1.53 V vs.RHE)in 0.1 mol/L KOH.Accordingly,a rechargeable Zn‐air battery of Fe_(x)Co_(9−x)S_(8)‐NHCS‐V cathode endows high energy efficiency(102 mW cm^(−2)),and a microbial fuel cell achieves a high‐power density(791±42 mW m^(−2)),outperforming the benchmark Pt/C catalyst.展开更多
BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of ...BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of the tumor and adjacent esophageal mucosa in the same patient.AIM To investigate how urinary metabolic phenotypes were linked to the changes in the biochemical landscape of esophageal tumors.METHODS Nuclear magnetic resonance-based metabolomics were applied to esophageal tumor tissues and adjacent normal mucosal tissues alongside patient-matched urine samples.RESULTS Analysis revealed that specific metabolite changes overlapped across both metrics,including glucose,glutamate,citrate,glycine,creatinine and taurine,indicating that the networks for metabolic pathway perturbations in EC,potentially involved in but not limited to disruption of fatty acid metabolism,glucose and glycolytic metabolism,tricarboxylic acid cycle and glutaminolysis.Additionally,changes in most urinary biomarkers correlated with changes in biomarker candidates in EC tissues,implying enhanced energy production for rapid cell proliferation.CONCLUSION Overall,these associations provide evidence for distinct metabolic signatures and pathway disturbances between the tumor tissues and urine of EC patients,and changes in urinary metabolic signature could reflect reprogramming of the aforementioned metabolic pathways in EC tissues.Further investigation is needed to validate these initial findings using larger samples and to establish the underlying mechanism of EC progression.展开更多
The development of single electrode with multifunctional purposes for electrochemical devices remains a symbolic challenge in recent technology.This work explores interfacially-rich transition metal nitride hybrid tha...The development of single electrode with multifunctional purposes for electrochemical devices remains a symbolic challenge in recent technology.This work explores interfacially-rich transition metal nitride hybrid that consist of nickel nitride and vanadium oxynitride(VO_(0.26)N_(0.52))on robust carbon fiber(denoted CF/Ni_(3)N/VON)as trifunctional electrode for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and sodium ion batteries(SIBs).The as-prepared CF/Ni_(3)N/VON exhibits low HER overpotential of 48 m V@10 m A cm^(-2),OER overpotential of 287 m V@10 m A cm^(-2),and sodium-ion anode storage reversible capacity of 555 m A h g^(-1)@0.2 C.Theoretical analyses reveal that the Ni_(3)N effectively facilitates hydrogen desorption for HER,increases the electrical conductivity for OER,and promotes the Na-ion storage intercalation process,while the VON substantially elevates the water dissociation kinetics for HER,accelerates the adsorption of OH*intermediate for OER and enhances the Na-ion surface adsorption storage process.Owing to the excellent HER and OER performances of the CF/Ni_(3)N/VON electrode,an overall water splitting device denoted as CF/Ni_(3)N/VON//CF/Ni_(3)N/VON was not only assembled showing an operating voltage of 1.63 V at current density of 10 m A cm^(-2)but was also successfully self-powered by the assembled CF/Ni_(3)N/VON//CF/Na_(3)V_(2)(PO_(4))_(3) flexible sodium ion battery.This work will contribute to the development of efficient and cost-effective flexible integrated electrochemical energy devices.展开更多
CRISPR/Cas9-mediated genome editing can inhibit virus infection by targeting the conserved regions of the viral genomic DNA. Unexpectedly, we found previously that pseudorabies virus(PRV) could escape from CRISPR/Cas9...CRISPR/Cas9-mediated genome editing can inhibit virus infection by targeting the conserved regions of the viral genomic DNA. Unexpectedly, we found previously that pseudorabies virus(PRV) could escape from CRISPR/Cas9-mediated inhibition.In order to elucidate whether the escape of PRV from Cas9-mediated inhibition was due to cell deficiencies, such as genetic instability of sgRNA or Cas9 protein, the positive cells were passaged ten times, and PRV infection in the sgRNA-expressing cells was evaluated in the present study. The results showed that subculturing cells has no effect on Cas9-mediated cleavage of PRV. Different passages of PX459-PRV cells can stably express sgRNA to facilitate Cas9/sgRNA cleavage on the UL30 gene of PRV, resulting in a pronounced inhibition of PRV infection. Studies to elucidate the mechanism of PRV escape are currently in progress.展开更多
A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high are...A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.展开更多
PCV2 is considered the main pathogen of porcine circovirus diseases and porcine circovirus-associated diseases(PCVD/PCVAD). However, the exact mechanism underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2...PCV2 is considered the main pathogen of porcine circovirus diseases and porcine circovirus-associated diseases(PCVD/PCVAD). However, the exact mechanism underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2 are valuable experimental tools that can shed light on the pathogenesis of infection and will enable the evaluation of antiviral agents and vaccine candidates. In this review, we discuss the current state of knowledge of mouse models used in PCV2 research that has been performed to date, highlighting their strengths and limitations, as well as prospects for future PCV2 studies.展开更多
Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) servi...Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) serving as a bifunctional catalyst, which exhibits excellent hydrogen evolution reaction perfor-mance (10.0 mAcm^-2 at 0.112 V, and low Tafel slope for 104.9 mV dec^-1 ) and oxygen evolution reaction performance (10.0 mAcm^-2 at 1.57 V, and low Tafel slope for 76.1 mV dec^-1), meanwbile with a strong stability at various current densities. In-depth study reveals that the excellent catalytic properties can be mainly attributed to the increased catalytic sites induced by S, N co-doping, the improved electronic con-ductivity derived from the carbon nanotubes, and Mott-Schottky effect between the metal cobalt and semiconductive cobalt disulfide. Notably, when the bifunctional catalysts are applied to overall water splitting, a low potential of 1.633 V at the current density of 10.0 mAcm^-2 is achieved, which can com-pete with the precious metal catalyst benchmarks in alkaline media, demonstrating its promising prac-ticability in the realistic water splitting application. This work elucidates a practicable way to the design of transition metal and nano-carbon composite catalysts for a broad application in the fields of energy chemistry.展开更多
Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient ...Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient oxygen evolution reaction(OER)catalyst,suffers from slow hydrogen evolution reaction(HER)kinetics,restricting its application for overall water splitting.Herein,we construct the hierarchical MoS_(2)/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER.Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy,tens of exposed active sites,rapid mass-and charge-transfer processes,the MoS_(2)/NiFe LDH displays a highly efficient synergistic electrocatalytic effect.The MoS_(2)/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity,only 98 mV overpotential at 10 mA/cm^(2).Significantly,when it assembled as anode and cathode for overall water splitting,only 1.61 V cell voltage was required to achieve 10 mA/cm^(2)with excellent durability(50 h).展开更多
The development of stable and efficient low-cost electrocatalysts is conducive to the industrialization of CO_(2).The synergy effect between the heterogeneous interface of metal/oxide can promote the conversion of CO_...The development of stable and efficient low-cost electrocatalysts is conducive to the industrialization of CO_(2).The synergy effect between the heterogeneous interface of metal/oxide can promote the conversion of CO_(2).In this work,Cu_(2)O/ZnO heterostructures with partially reduced metal/oxide heterointerfaces in Zn plates(CZZ)have been synthesized for CO_(2)electroreduction in different cationic solutions(K^(+)and Cs^(+)).Physical characterizations were used to demonstrate the heterojunction of Cu_(2)O/ZnO and the heterointerfaces of metal/oxide,electrochemical tests were used to illustrate the enhancement of the selectivity of CO_(2)to CO in different cationic solutions.Faraday efficiency for CO with CZZ as catalyst reaches 70.9%in K+solution(current density for CO−3.77 mA cm^(−2)and stability 24 h),and the Faraday efficiency for CO is 55.2%in Cs^(+)solution(−2.47 mA cm^(−2)and 21 h).In addition,in situ techniques are used to elucidate possible reaction mechanisms for the conversion of CO_(2)to CO in K^(+)and Cs^(+)solutions.展开更多
Layered double hydroxides(LDHs)with decent oxygen evolution reaction(OER)activity have been extensively studied in the fields of energy storage and conversion.However,their poor conductivity,ease of agglomeration,and ...Layered double hydroxides(LDHs)with decent oxygen evolution reaction(OER)activity have been extensively studied in the fields of energy storage and conversion.However,their poor conductivity,ease of agglomeration,and low intrinsic activity limit their practical application.To date,improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention.In this study,vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes(NiFe P/MXene)were successfully synthesised through a hydrothermal reaction and phosphating calcination process.The optimised NiFe P/MXene exhibited a low overpotential of 286 m V at 10 m A cm^(-2) and a Tafel slope of 35 m V dec^(-1) for the OER,which exceeded the performance of several existing NiFe-based catalysts.NiFe P/MXene was further used as a water-splitting anode in an alkaline electrolyte,exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 m A cm^(-2).Density functional theory(DFT)calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre,resulting in an enhanced OER performance.This study provides a valuable guideline for designing high-performance MXenesupported NiFe-based OER catalysts.展开更多
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
文摘Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like hollow carbon sphere is well designed on octahedral and tetrahedral sites.The robust FexCo9−xS8‐NHCS‐V with iron replacing at the octahedron possesses prolonged metal sulfur bond and exhibits excellent bifunctional electrocatalytic performance towards oxygen reduction reaction(ORR,E_(1/2)=0.80 V vs.RHE)and excellent oxygen evolution reaction(OER,E_(j=10)=1.53 V vs.RHE)in 0.1 mol/L KOH.Accordingly,a rechargeable Zn‐air battery of Fe_(x)Co_(9−x)S_(8)‐NHCS‐V cathode endows high energy efficiency(102 mW cm^(−2)),and a microbial fuel cell achieves a high‐power density(791±42 mW m^(−2)),outperforming the benchmark Pt/C catalyst.
基金Supported by the National Natural Science Foundation of China,No.81471729 and No.81101102the Science and Technology and Planning Project of Guangdong Province,No.2016A020216025+2 种基金the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions,Guangdong Province,No.YQ2015245the National Natural Science Foundation of Guangdong Province,No.S2011010004973the Department of Education of Guangdong Province,No.2017KTSCX071
文摘BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of the tumor and adjacent esophageal mucosa in the same patient.AIM To investigate how urinary metabolic phenotypes were linked to the changes in the biochemical landscape of esophageal tumors.METHODS Nuclear magnetic resonance-based metabolomics were applied to esophageal tumor tissues and adjacent normal mucosal tissues alongside patient-matched urine samples.RESULTS Analysis revealed that specific metabolite changes overlapped across both metrics,including glucose,glutamate,citrate,glycine,creatinine and taurine,indicating that the networks for metabolic pathway perturbations in EC,potentially involved in but not limited to disruption of fatty acid metabolism,glucose and glycolytic metabolism,tricarboxylic acid cycle and glutaminolysis.Additionally,changes in most urinary biomarkers correlated with changes in biomarker candidates in EC tissues,implying enhanced energy production for rapid cell proliferation.CONCLUSION Overall,these associations provide evidence for distinct metabolic signatures and pathway disturbances between the tumor tissues and urine of EC patients,and changes in urinary metabolic signature could reflect reprogramming of the aforementioned metabolic pathways in EC tissues.Further investigation is needed to validate these initial findings using larger samples and to establish the underlying mechanism of EC progression.
基金supported by the Hunan Provincial Natural Science Foundation (2021JJ30087)the Science and Technology Innovation Program of Hunan Province (2022WZ1012)the Fundamental Research Funds for the Central Universities and Guangxi Key Laboratory of Information Materials&Guilin University of Electronic Technology,China (211011K)。
文摘The development of single electrode with multifunctional purposes for electrochemical devices remains a symbolic challenge in recent technology.This work explores interfacially-rich transition metal nitride hybrid that consist of nickel nitride and vanadium oxynitride(VO_(0.26)N_(0.52))on robust carbon fiber(denoted CF/Ni_(3)N/VON)as trifunctional electrode for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and sodium ion batteries(SIBs).The as-prepared CF/Ni_(3)N/VON exhibits low HER overpotential of 48 m V@10 m A cm^(-2),OER overpotential of 287 m V@10 m A cm^(-2),and sodium-ion anode storage reversible capacity of 555 m A h g^(-1)@0.2 C.Theoretical analyses reveal that the Ni_(3)N effectively facilitates hydrogen desorption for HER,increases the electrical conductivity for OER,and promotes the Na-ion storage intercalation process,while the VON substantially elevates the water dissociation kinetics for HER,accelerates the adsorption of OH*intermediate for OER and enhances the Na-ion surface adsorption storage process.Owing to the excellent HER and OER performances of the CF/Ni_(3)N/VON electrode,an overall water splitting device denoted as CF/Ni_(3)N/VON//CF/Ni_(3)N/VON was not only assembled showing an operating voltage of 1.63 V at current density of 10 m A cm^(-2)but was also successfully self-powered by the assembled CF/Ni_(3)N/VON//CF/Na_(3)V_(2)(PO_(4))_(3) flexible sodium ion battery.This work will contribute to the development of efficient and cost-effective flexible integrated electrochemical energy devices.
基金financially supported by the National Key Research and Development Program of China(No.2017YFD0500103)the Beijing Natural Science Foundation(No.5152023)+4 种基金the National Natural Science Foundation of China(No.31772747 and31272385)the Jilin Province Science and Technology Development Projects(20150204077NY)the Graduate Innovation Fund of Jilin Universitythe Program for Chang jiang Scholarsthe University Innovative Research Team(No.IRT1248)
文摘CRISPR/Cas9-mediated genome editing can inhibit virus infection by targeting the conserved regions of the viral genomic DNA. Unexpectedly, we found previously that pseudorabies virus(PRV) could escape from CRISPR/Cas9-mediated inhibition.In order to elucidate whether the escape of PRV from Cas9-mediated inhibition was due to cell deficiencies, such as genetic instability of sgRNA or Cas9 protein, the positive cells were passaged ten times, and PRV infection in the sgRNA-expressing cells was evaluated in the present study. The results showed that subculturing cells has no effect on Cas9-mediated cleavage of PRV. Different passages of PX459-PRV cells can stably express sgRNA to facilitate Cas9/sgRNA cleavage on the UL30 gene of PRV, resulting in a pronounced inhibition of PRV infection. Studies to elucidate the mechanism of PRV escape are currently in progress.
基金The National Natural Science Foundation of China(21875292)the Fundamental Research Funds for the Central Universities+1 种基金Guangxi Key Laboratory of Information Materials&Guilin University of Electronic Technology,China(191014K)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007).
文摘A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.
基金National Key Research and Development Program of China,Grant/Award Number:2017YFD0500103National Natural Science Foundation of China,Grant/Award Number:31772747,31272385+3 种基金Jilin Province Science and Technology Development Projects,Grant/Award Number:20150204077NYGraduate Innovation Fund of Jilin Universitythe Program for Changjiang Scholarsthe University Innovative Research Team,Grant/Award Number:IRT1248
文摘PCV2 is considered the main pathogen of porcine circovirus diseases and porcine circovirus-associated diseases(PCVD/PCVAD). However, the exact mechanism underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2 are valuable experimental tools that can shed light on the pathogenesis of infection and will enable the evaluation of antiviral agents and vaccine candidates. In this review, we discuss the current state of knowledge of mouse models used in PCV2 research that has been performed to date, highlighting their strengths and limitations, as well as prospects for future PCV2 studies.
基金financially supported by the National Natural Science Foundation of China(21576056 and 21576057)Guangdong Natural Science Foundation(2017A030311016)+4 种基金Major Scientific Project of Guangdong University(2017KZDXM059)Science and Technology Research Project of Guangdong Province(2016A010103043)Science and Technology Research Project of Guangzhou(201607010232)Guangzhou University’s 2017 Training Program for Young Top-Notch Personnel(BJ201704)Australian Research Council(ARC)through Discovery Early Career Researcher Award(DE150101306)and Linkage Project(LP160100927)
文摘Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) serving as a bifunctional catalyst, which exhibits excellent hydrogen evolution reaction perfor-mance (10.0 mAcm^-2 at 0.112 V, and low Tafel slope for 104.9 mV dec^-1 ) and oxygen evolution reaction performance (10.0 mAcm^-2 at 1.57 V, and low Tafel slope for 76.1 mV dec^-1), meanwbile with a strong stability at various current densities. In-depth study reveals that the excellent catalytic properties can be mainly attributed to the increased catalytic sites induced by S, N co-doping, the improved electronic con-ductivity derived from the carbon nanotubes, and Mott-Schottky effect between the metal cobalt and semiconductive cobalt disulfide. Notably, when the bifunctional catalysts are applied to overall water splitting, a low potential of 1.633 V at the current density of 10.0 mAcm^-2 is achieved, which can com-pete with the precious metal catalyst benchmarks in alkaline media, demonstrating its promising prac-ticability in the realistic water splitting application. This work elucidates a practicable way to the design of transition metal and nano-carbon composite catalysts for a broad application in the fields of energy chemistry.
基金supported by National Natural Science Foundation of China(No.21875048)Outstanding Youth Project of Guangdong Natural Science Foundation(No.2020B1515020028)+2 种基金Major Scientific Project of Guangdong University(No.2017KZDXM059)Yangcheng Scholars Research Project of Guangzhou(No.201831820)Science and Technology Research Project of Guangzhou(No.202002010007)。
基金financially supported by National Natural Science Foundation of China(Nos.21875048 and 21905063)Outstanding Youth Project of Guangdong Natural Science Foundation(No.2020B1515020028)+1 种基金Guangdong Natural Science Foundation(No.2021A1515010066)Science and Technology Research Project of Guangzhou(Nos.201904010052 and 202002010007)。
文摘Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient oxygen evolution reaction(OER)catalyst,suffers from slow hydrogen evolution reaction(HER)kinetics,restricting its application for overall water splitting.Herein,we construct the hierarchical MoS_(2)/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER.Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy,tens of exposed active sites,rapid mass-and charge-transfer processes,the MoS_(2)/NiFe LDH displays a highly efficient synergistic electrocatalytic effect.The MoS_(2)/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity,only 98 mV overpotential at 10 mA/cm^(2).Significantly,when it assembled as anode and cathode for overall water splitting,only 1.61 V cell voltage was required to achieve 10 mA/cm^(2)with excellent durability(50 h).
基金National Natural Science Foundation of China,Grant/Award Numbers:22379033,22278094Guangdong Graduate Education Innovation Program,Grant/Award Number:2023JGXM_102+2 种基金Guangdong Natural Science Foundation,Grant/Award Number:2021A1515010066Basic and Applied Basic Research Program of Guangzhou,Grant/Award Number:SL2024A03J00499University Innovation Team Scientific Research Project of Guangzhou,Grant/Award Number:202235246。
文摘The development of stable and efficient low-cost electrocatalysts is conducive to the industrialization of CO_(2).The synergy effect between the heterogeneous interface of metal/oxide can promote the conversion of CO_(2).In this work,Cu_(2)O/ZnO heterostructures with partially reduced metal/oxide heterointerfaces in Zn plates(CZZ)have been synthesized for CO_(2)electroreduction in different cationic solutions(K^(+)and Cs^(+)).Physical characterizations were used to demonstrate the heterojunction of Cu_(2)O/ZnO and the heterointerfaces of metal/oxide,electrochemical tests were used to illustrate the enhancement of the selectivity of CO_(2)to CO in different cationic solutions.Faraday efficiency for CO with CZZ as catalyst reaches 70.9%in K+solution(current density for CO−3.77 mA cm^(−2)and stability 24 h),and the Faraday efficiency for CO is 55.2%in Cs^(+)solution(−2.47 mA cm^(−2)and 21 h).In addition,in situ techniques are used to elucidate possible reaction mechanisms for the conversion of CO_(2)to CO in K^(+)and Cs^(+)solutions.
基金supported by the National Natural Science Foundation of China(21875048)the Outstanding Youth Project of Guangdong Natural Science Foundation(2020B1515020028)+1 种基金the Yangcheng Scholars Research Project of Guangzhou(201831820)the Science and Technology Research Project of Guangzhou(202002010007)。
文摘Layered double hydroxides(LDHs)with decent oxygen evolution reaction(OER)activity have been extensively studied in the fields of energy storage and conversion.However,their poor conductivity,ease of agglomeration,and low intrinsic activity limit their practical application.To date,improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention.In this study,vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes(NiFe P/MXene)were successfully synthesised through a hydrothermal reaction and phosphating calcination process.The optimised NiFe P/MXene exhibited a low overpotential of 286 m V at 10 m A cm^(-2) and a Tafel slope of 35 m V dec^(-1) for the OER,which exceeded the performance of several existing NiFe-based catalysts.NiFe P/MXene was further used as a water-splitting anode in an alkaline electrolyte,exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 m A cm^(-2).Density functional theory(DFT)calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre,resulting in an enhanced OER performance.This study provides a valuable guideline for designing high-performance MXenesupported NiFe-based OER catalysts.