The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF6 b...The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D. As a validation, the experiments of a SF6 bubble accelerated by a planar shock were performed. The results indicate that, due to the mismatch of acoustic impedance, the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition. With respect to the same bubble, the manner of jet formation is also distinctly different under different shock strengths. The disparities of the acoustic impedance result in different effects of shock focusing in the bubble, and different behaviors of shock wave inside and outside the bubble. The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation. Moreover, the analy- sis of the vorticity deposition, and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation. It is concluded that the pres- sure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.展开更多
Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous s...Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.展开更多
In this study, we carried out experimental and numerical investigations on the dripping dynamics in axisymmetric capillary flow focusing. For the direct numerical simulations, we solved the Navier-Stokes equations cou...In this study, we carried out experimental and numerical investigations on the dripping dynamics in axisymmetric capillary flow focusing. For the direct numerical simulations, we solved the Navier-Stokes equations coupled with a diffuse interface method.For the experiments, we observed both periodic and non-periodic dripping modes at different focused and focusing liquid flow rates. The non-periodic dripping that results in polydispersed droplets downstream the orifice can be attributed to the nonlinear dynamics of the flow;thus, we constructed numerical plots of the streamlines and temporal evolutions of the focused liquid cone in different modes. We identified a phase diagram of the dripping regimes in the plane of mainly dimensionless parameters, which led us to further investigate the effects of liquid physical properties, such as viscosity and interface tension, on the mode transition.For suppression of the nonlinear dynamics, we proposed a geometrical optimization that imports a guiding rod positioning along the axis of the capillary tube. Here, we conducted a numerical analysis on the manipulation of the dripping process, as well as scaling analysis on the appearance of the nonlinear dripping. We expect this study to provide an insight into the underlying physical mechanisms of dripping in flow focusing, which are advantageous in the generation of monodispersed microdroplets for various applications.展开更多
基金supported by the National Natural Science Foundation of China (10972214 and 11172278)the Fundamental Research Funds for the Central Universities (WK2090050014)
文摘The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D. As a validation, the experiments of a SF6 bubble accelerated by a planar shock were performed. The results indicate that, due to the mismatch of acoustic impedance, the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition. With respect to the same bubble, the manner of jet formation is also distinctly different under different shock strengths. The disparities of the acoustic impedance result in different effects of shock focusing in the bubble, and different behaviors of shock wave inside and outside the bubble. The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation. Moreover, the analy- sis of the vorticity deposition, and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation. It is concluded that the pres- sure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.
基金supported by the National Natural Science Foundation of China Project (11002139)the China Postdoctoral Science Foundation (20100470854)
文摘Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11722222,11472270,and 11621202)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22040403)the Youth Innovation Promotion Association CAS(Grant No.2018491)
文摘In this study, we carried out experimental and numerical investigations on the dripping dynamics in axisymmetric capillary flow focusing. For the direct numerical simulations, we solved the Navier-Stokes equations coupled with a diffuse interface method.For the experiments, we observed both periodic and non-periodic dripping modes at different focused and focusing liquid flow rates. The non-periodic dripping that results in polydispersed droplets downstream the orifice can be attributed to the nonlinear dynamics of the flow;thus, we constructed numerical plots of the streamlines and temporal evolutions of the focused liquid cone in different modes. We identified a phase diagram of the dripping regimes in the plane of mainly dimensionless parameters, which led us to further investigate the effects of liquid physical properties, such as viscosity and interface tension, on the mode transition.For suppression of the nonlinear dynamics, we proposed a geometrical optimization that imports a guiding rod positioning along the axis of the capillary tube. Here, we conducted a numerical analysis on the manipulation of the dripping process, as well as scaling analysis on the appearance of the nonlinear dripping. We expect this study to provide an insight into the underlying physical mechanisms of dripping in flow focusing, which are advantageous in the generation of monodispersed microdroplets for various applications.