Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selecte...Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selected as the study subjects,and the cost-effectiveness analysis of different dosage forms of Yinzhihuang in the treatment of neonatal jaundice was selected as the teaching case.The flipped classroom combined with case-based learning teaching method was used to carry out theoretical teaching to the students.After the course,questionnaires were distributed through the Sojump platform to evaluate the teaching effect.Results:The results of the questionnaire showed that 85.71%of the students believed that the flipped classroom combined with case-based learning teaching method was helpful in mobilizing the learning enthusiasm and initiative,and improving the comprehensive application ability of the knowledge of pharmacoeconomics.92.86%of the students think that it is conducive to the understanding and memorization of learning content,as well as the cultivation of teamwork,communication,etc.Conclusion:Flipped classroom combined with case-based learning teaching method can improve students’knowledge mastery,thinking skills,and practical application skills,as well as optimize and improve teachers’teaching levels.展开更多
Developing wheat that acquires and uses phosphorus(P)more efficiently is a promising and low-cost solution for increasing grain yield and reducing P-related environmental impacts.The present study identified agronomic...Developing wheat that acquires and uses phosphorus(P)more efficiently is a promising and low-cost solution for increasing grain yield and reducing P-related environmental impacts.The present study identified agronomic and physiological traits that contribute to genetic variation in the P acquisition,remobilization,and utilization efficiency of 11 wheat cultivars from southwest China grown in P-deficient purple lithomorphic soil(Olsen P=4.7)with balanced(75 kg P ha^(−1))and excess P(120 kg P ha^(−1))supplies.On average,soil P deficiency(–P)reduced root P uptake(17.0%–60.8%),P remobilization(33.9%–52.8%),dry mass yield(11.5%–39.2%),and grain yield(17.7%–54.4%).Balanced P(+P)increased grain yield via increased plant biomass rather than increased HI.–P increased phosphorus uptake efficiency(PUpE,4.5-fold),phosphorus utilization efficiency(PUtE,1.25-fold),and phosphorus use efficiency(PUE,5.4-fold)compared with those under+P,and PUtE explained most(58.1%–60.8%)of the genetic variation in PUE under both–P and+P.The high root P uptake of P-efficient cultivars under–P was regulated by root surface area and root length density in the 0–10 cm soil layer but not in the 10–20 and 20–40 cm soil layers,suggesting that a topsoil foraging strategy is a more economical approach than deeper root exploration for increasing P uptake.Root P uptake before anthesis and P remobilization after anthesis were critical for increasing the PUtE of wheat,given that P-efficient cultivars showed higher Pn(net photosynthetic rate)and sucrose levels than P-inefficient cultivars.Pn reduction by–P resulted from decreased Gs and Ci,and high evapotranspiration under+P increased shoot P%by increasing root P uptake.Genetic variation in the source-to-sink ratio was observed in consequence of a+P-induced allometric increase in sucrose in leaves and kernels.Owing to these beneficial effects,+P increased the kernel N and P yields of the 11 cultivars by 9.9%–52.4%and 12.3%–48.8%,respectively.The findings of this study could help improve wheat in future breeding efforts and P management by identifying desirable Pefficient phenotypes in P-deficient farming systems.展开更多
One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formul...One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model(CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%–61%, and developing countries approximately 39%–47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases(GHGs)in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20 th century.展开更多
The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uph...The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.展开更多
[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose ...[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose extract group(200 mg/kg),low-dose extract group(100 mg/kg)and positive control group(2 mg/kg colchicine),with 5 mice in each group.All groups except the blank group were given intraperitoneal injection of 20%CCl 4 olive oil solution(2 mL/kg),and the blank group was given the same dose of olive oil solution three times a week.After 4 weeks,each administration group was given the corresponding dose of drugs(10 mL/kg),and the blank group and model group were given the corresponding amount of normal saline for 2 weeks.After the last intragastric administration,fasting was required,but water was allowed,blood was taken from eyeballs,and upper serum was taken by static centrifugation.Serum AST,ALT,CRP,IL-6 and SOD levels were detected by the kit.[Results]Compared with the blank group,the serum AST and ALT levels in the model group were significantly increased;compared with the model group,the ethanol extract of sweet potato leaves could decrease the levels of ALT,AST,CRP,IL-6 and increase the level of SOD in serum.[Conclusions]The ethanol extract of sweet potato leaves had protective effect on the mice with liver injury induced by CCl_(4),and its mechanism may be to protect the liver by lowering enzymes,inhibiting inflammation and antioxidant stress.展开更多
Phytoremediation is a cost-effective and environment-friendly strategy for decontaminating heavy-metal-contaminated soil.However, the practical use of phytoremediation is constrained by the low biomass of plants and l...Phytoremediation is a cost-effective and environment-friendly strategy for decontaminating heavy-metal-contaminated soil.However, the practical use of phytoremediation is constrained by the low biomass of plants and low bioavailability of heavy metals in soil.A pot experiment was conducted to investigate the effects of the metal chelator ethylenediaminetetraacetic acid(EDTA) and EDTA in combination with plant growth-promoting rhizobacteria(Burkholderia sp.D54 or Burkholderia sp.D416) on the growth and metal uptake of the hyperaccumulator Sedum alfredii Hance.According to the results, EDTA application decreased shoot and root biomass by 50% and 43%, respectively.The soil respiration and Cd,Pb, Zn uptake were depressed, while the photosynthetic rate, glutathione and phytochelatin(PC) contents were increased by EDTA application.Interestingly, Burkholderia sp.D54 and Burkholderia sp.D416 inoculation significantly relieved the inhibitory effects of EDTA on plant growth and soil respiration.Compared with the control, EDTA + D416 treatment increased the Cd concentration in shoots and decreased the Pb concentration in shoots and roots, but did not change the Zn concentration in S.alfredii plants.Furthermore,EDTA, EDTA + D54 and EDTA + D416 application increased the cysteine and PC contents in S.alfredii(p < 0.05);among all tested PCs, the most abundant species was PC2, and compared with the control, the PC2 content was increased by 371.0%, 1158.6% and 815.6%,respectively.These results will provide some insights into the practical use of EDTA and PGPR in the phytoremediation of heavy-metal-contaminated soil by S.alfredii.展开更多
Adhesive hydrogel has drawn great attention for wide applications in wound healing owing to its excellent biocompatibility and lasting adhesiveness.However,traditional adhesive hydrogels only keep the wound moist to p...Adhesive hydrogel has drawn great attention for wide applications in wound healing owing to its excellent biocompatibility and lasting adhesiveness.However,traditional adhesive hydrogels only keep the wound moist to promote wound healing.It is still imperative to fabricate adhesive hydrogels that exhibit efficient antibacterial ability,active driving dynamic wound closure,and reactive oxygen species(ROS)scavenging together with excellent mechanical properties.Here,a novel hydrogel based on poly(N-isopropyl acrylamide)(PNIPAAm),a thermoresponsive polymer,and tannic acid(TA)-Ag nanoparticles(TA-Ag NPs)exhibiting active contraction,tissue adhesion,anti-inflammatory and antibacterial functions was developed.TA-Ag dispersed in the hydrogel not only functioned as the catalyst to polymerize the reaction but also provided additional anti-inflammatory and antibacterial properties.Besides,tannic acid containing catechol groups endowed the hydrogel with adhesive ability.More interestingly,the obtained hydrogel exhibited the thermoresponsive shrinkage ability,which could mechanically drive wound closure due to the presence of PNIPAAm network.In vivo mouse full-thickness skin defect model demonstrated that this actively contractible and antibacterial hydrogel is a promising dressing to improve wound healing process by accelerating tissue regeneration and preventing bacterial infection.Therefore,this multi-functional adhesive hydrogel developed here may provide a new possibility for wound healing.展开更多
The year 2023 has become the warmest year on global record.As the Antarctic and Arctic are sensitive regions to global warming,the climate changes in 2023 in these regions have attracted widespread attention.In this s...The year 2023 has become the warmest year on global record.As the Antarctic and Arctic are sensitive regions to global warming,the climate changes in 2023 in these regions have attracted widespread attention.In this study,using observations,reanalysis and remote sensing data,we reported detailed polar climate changes in 2023,including warming,sea ice,atmospheric composition and extreme events.Antarctic exhibited large east-west regional differences and the coexistence of extreme warm and cold events.In Coats Land,Queen Maud Land and the Antarctic Peninsula,three and seven stations recorded the second and third highest autumn air temperatures in history,respectively.The Amundsen-Scott station experienced extreme warming event in July,with the temperature increasing by 40℃ in one day.Abnormal cooling was evident in the Ross Sea and neighboring regions which were predominantly winter(June-August)cold anomalies,with Marylin Station reaching the lowest winter temperature in history.The Arctic experienced the warmest summer after 1979,with an overall distribution of warm land-cold sea'on annual average.Compared with the 1991-2020 average,the annual air temperature anomalies reached more than 2℃in northern Canada and the Barents Sea-Kara Sea coast.Abnormal high summer temperature caused most severe wildfires in Canada on record and second largest daily cumulative melt area over the Greenland ice Sheet daily post-1979.Polar sea ice continued to decrease rapidly,with minimum sea ice extent in Antarctic and Arctic ranking the first and sixth lowest post-1979.For melt season,Arctic Ocean sea ice began to melt later in 2023 than the 2011-2023 average,and freeze onset was delayed due to high temperatures in summer and autumn.Additionally,the status of polar atmospheric greenhouse gases remains bleak,and major greenhouse gas concentrations continue to increase.The Antarctic ozone hole in 2023 formed approximately 10 d earlier and lasted longer than the 1979-2023 average,with a maximum daily area of 2.6×10^(7)km^(2) on 21 September.This summary of polar climate changes in 2023 will help people better understand global climate change and draw attention to polar regions.展开更多
Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction ...Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.展开更多
Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and...Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.展开更多
The carbon cycle is one of the fundamental climate change issues.Its long-term evolution largely affects the amplitude and trend of human-induced climate change,as well as the formulation and implementation of emissio...The carbon cycle is one of the fundamental climate change issues.Its long-term evolution largely affects the amplitude and trend of human-induced climate change,as well as the formulation and implementation of emission reduction policy and technology for stabilizing the atmospheric CO2concentration.Two earth system models incorporating the global carbon cycle,the Community Earth System Model and the Beijing Normal University-Earth System Model,were used to investigate the effect of the carbon cycle on the attribution of the historical responsibility for climate change.The simulations show that when compared with the criterion based on cumulative emissions,the developed(developing)countries’responsibility is reduced(increased)by 6%–10%using atmospheric CO2concentration as the criterion.This discrepancy is attributed to the fact that the developed world contributed approximately61%–68%(61%–64%)to the change in global oceanic(terrestrial)carbon sequestration for the period from 1850 to2005,whereas the developing world contributed approximately 32%–49%(36%–39%).Under a developed world emissions scenario,the relatively larger uptake of global carbon sinks reduced the developed countries’responsibility for carbon emissions but increased their responsibility for global ocean acidification(68%).In addition,the large emissions from the developed world reduced the efficiency of the global carbon sinks,which may affect the long-term carbon sequestration and exacerbate global warming in the future.Therefore,it is necessary to further consider the interaction between carbon emissions and the carbon cycle when formulating emission reduction policy.展开更多
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous ...Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tfidemorph, a sterol biosynthetic inhibitor. The inhibition of phy- tosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phy- tosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher con- centrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, dur- ing the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cot- ton fiber development, and particularly in fiber elongation.展开更多
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
基金2022 Medical Innovation and Development Project of Lanzhou University(lzuyxcx-2022-40)2022 Education and Teaching Reform Research Project of Lanzhou University General Project(202201)The Foundation of the First Hospital of Lanzhou University(ldyyyn 2021-92)。
文摘Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selected as the study subjects,and the cost-effectiveness analysis of different dosage forms of Yinzhihuang in the treatment of neonatal jaundice was selected as the teaching case.The flipped classroom combined with case-based learning teaching method was used to carry out theoretical teaching to the students.After the course,questionnaires were distributed through the Sojump platform to evaluate the teaching effect.Results:The results of the questionnaire showed that 85.71%of the students believed that the flipped classroom combined with case-based learning teaching method was helpful in mobilizing the learning enthusiasm and initiative,and improving the comprehensive application ability of the knowledge of pharmacoeconomics.92.86%of the students think that it is conducive to the understanding and memorization of learning content,as well as the cultivation of teamwork,communication,etc.Conclusion:Flipped classroom combined with case-based learning teaching method can improve students’knowledge mastery,thinking skills,and practical application skills,as well as optimize and improve teachers’teaching levels.
基金support from the Sichuan Province Science and Technology Support Program(2021YJ0504,2021YFYZ0002)National Key Research and Development Program of China(2016YFD0300406)+1 种基金Special Fund for Agro-scientific Research in the Public Interest(20150312705)Crops Breeding Project in Sichuan Province(2016NYZ0051,22ZDZX0018).
文摘Developing wheat that acquires and uses phosphorus(P)more efficiently is a promising and low-cost solution for increasing grain yield and reducing P-related environmental impacts.The present study identified agronomic and physiological traits that contribute to genetic variation in the P acquisition,remobilization,and utilization efficiency of 11 wheat cultivars from southwest China grown in P-deficient purple lithomorphic soil(Olsen P=4.7)with balanced(75 kg P ha^(−1))and excess P(120 kg P ha^(−1))supplies.On average,soil P deficiency(–P)reduced root P uptake(17.0%–60.8%),P remobilization(33.9%–52.8%),dry mass yield(11.5%–39.2%),and grain yield(17.7%–54.4%).Balanced P(+P)increased grain yield via increased plant biomass rather than increased HI.–P increased phosphorus uptake efficiency(PUpE,4.5-fold),phosphorus utilization efficiency(PUtE,1.25-fold),and phosphorus use efficiency(PUE,5.4-fold)compared with those under+P,and PUtE explained most(58.1%–60.8%)of the genetic variation in PUE under both–P and+P.The high root P uptake of P-efficient cultivars under–P was regulated by root surface area and root length density in the 0–10 cm soil layer but not in the 10–20 and 20–40 cm soil layers,suggesting that a topsoil foraging strategy is a more economical approach than deeper root exploration for increasing P uptake.Root P uptake before anthesis and P remobilization after anthesis were critical for increasing the PUtE of wheat,given that P-efficient cultivars showed higher Pn(net photosynthetic rate)and sucrose levels than P-inefficient cultivars.Pn reduction by–P resulted from decreased Gs and Ci,and high evapotranspiration under+P increased shoot P%by increasing root P uptake.Genetic variation in the source-to-sink ratio was observed in consequence of a+P-induced allometric increase in sucrose in leaves and kernels.Owing to these beneficial effects,+P increased the kernel N and P yields of the 11 cultivars by 9.9%–52.4%and 12.3%–48.8%,respectively.The findings of this study could help improve wheat in future breeding efforts and P management by identifying desirable Pefficient phenotypes in P-deficient farming systems.
基金funded by the National Natural Science Foundation of China(Grant Nos.41330527 and 41505068)National Key Program for Global Change Research of China(Grant No.2010CB950500)Fundamental Research Funds of CAMS(Grant No.2015Y004)
文摘One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model(CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%–61%, and developing countries approximately 39%–47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases(GHGs)in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20 th century.
基金The fund supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2021SP313the fundamental research funds for the Central Universities of Sun Yat-Sen University under contract No.23xkjc019the fund supported by China-Korea Joint Ocean Research Center of China under contract No. PI-2022-1-01
文摘The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.
基金Supported by National College Students Innovation and Entrepreneurship Training Program(202110599016)Guangxi Key R&D Project(GuiKeAB 18221095).
文摘[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose extract group(200 mg/kg),low-dose extract group(100 mg/kg)and positive control group(2 mg/kg colchicine),with 5 mice in each group.All groups except the blank group were given intraperitoneal injection of 20%CCl 4 olive oil solution(2 mL/kg),and the blank group was given the same dose of olive oil solution three times a week.After 4 weeks,each administration group was given the corresponding dose of drugs(10 mL/kg),and the blank group and model group were given the corresponding amount of normal saline for 2 weeks.After the last intragastric administration,fasting was required,but water was allowed,blood was taken from eyeballs,and upper serum was taken by static centrifugation.Serum AST,ALT,CRP,IL-6 and SOD levels were detected by the kit.[Results]Compared with the blank group,the serum AST and ALT levels in the model group were significantly increased;compared with the model group,the ethanol extract of sweet potato leaves could decrease the levels of ALT,AST,CRP,IL-6 and increase the level of SOD in serum.[Conclusions]The ethanol extract of sweet potato leaves had protective effect on the mice with liver injury induced by CCl_(4),and its mechanism may be to protect the liver by lowering enzymes,inhibiting inflammation and antioxidant stress.
基金supported by the National Natural Science Foundation of China (Nos.41977274, 41807123)the Shaanxi Province Key Research & Development Plan (No.2018ZDXMSF-022)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.18JK0100).
文摘Phytoremediation is a cost-effective and environment-friendly strategy for decontaminating heavy-metal-contaminated soil.However, the practical use of phytoremediation is constrained by the low biomass of plants and low bioavailability of heavy metals in soil.A pot experiment was conducted to investigate the effects of the metal chelator ethylenediaminetetraacetic acid(EDTA) and EDTA in combination with plant growth-promoting rhizobacteria(Burkholderia sp.D54 or Burkholderia sp.D416) on the growth and metal uptake of the hyperaccumulator Sedum alfredii Hance.According to the results, EDTA application decreased shoot and root biomass by 50% and 43%, respectively.The soil respiration and Cd,Pb, Zn uptake were depressed, while the photosynthetic rate, glutathione and phytochelatin(PC) contents were increased by EDTA application.Interestingly, Burkholderia sp.D54 and Burkholderia sp.D416 inoculation significantly relieved the inhibitory effects of EDTA on plant growth and soil respiration.Compared with the control, EDTA + D416 treatment increased the Cd concentration in shoots and decreased the Pb concentration in shoots and roots, but did not change the Zn concentration in S.alfredii plants.Furthermore,EDTA, EDTA + D54 and EDTA + D416 application increased the cysteine and PC contents in S.alfredii(p < 0.05);among all tested PCs, the most abundant species was PC2, and compared with the control, the PC2 content was increased by 371.0%, 1158.6% and 815.6%,respectively.These results will provide some insights into the practical use of EDTA and PGPR in the phytoremediation of heavy-metal-contaminated soil by S.alfredii.
基金supported by the National Research Programs of China(Nos.2020YFA0211100,and 2022YFA1206500)the National Natural Science Foundation of China(Nos.52250002,and 52325106)Suzhou Key Laboratory of Nanotechnology and Biomedicine,Collaborative Innovation Center of Suzhou Nano Science and Technology,and the 111 Program from the Ministry of Education of China.
文摘Adhesive hydrogel has drawn great attention for wide applications in wound healing owing to its excellent biocompatibility and lasting adhesiveness.However,traditional adhesive hydrogels only keep the wound moist to promote wound healing.It is still imperative to fabricate adhesive hydrogels that exhibit efficient antibacterial ability,active driving dynamic wound closure,and reactive oxygen species(ROS)scavenging together with excellent mechanical properties.Here,a novel hydrogel based on poly(N-isopropyl acrylamide)(PNIPAAm),a thermoresponsive polymer,and tannic acid(TA)-Ag nanoparticles(TA-Ag NPs)exhibiting active contraction,tissue adhesion,anti-inflammatory and antibacterial functions was developed.TA-Ag dispersed in the hydrogel not only functioned as the catalyst to polymerize the reaction but also provided additional anti-inflammatory and antibacterial properties.Besides,tannic acid containing catechol groups endowed the hydrogel with adhesive ability.More interestingly,the obtained hydrogel exhibited the thermoresponsive shrinkage ability,which could mechanically drive wound closure due to the presence of PNIPAAm network.In vivo mouse full-thickness skin defect model demonstrated that this actively contractible and antibacterial hydrogel is a promising dressing to improve wound healing process by accelerating tissue regeneration and preventing bacterial infection.Therefore,this multi-functional adhesive hydrogel developed here may provide a new possibility for wound healing.
文摘The year 2023 has become the warmest year on global record.As the Antarctic and Arctic are sensitive regions to global warming,the climate changes in 2023 in these regions have attracted widespread attention.In this study,using observations,reanalysis and remote sensing data,we reported detailed polar climate changes in 2023,including warming,sea ice,atmospheric composition and extreme events.Antarctic exhibited large east-west regional differences and the coexistence of extreme warm and cold events.In Coats Land,Queen Maud Land and the Antarctic Peninsula,three and seven stations recorded the second and third highest autumn air temperatures in history,respectively.The Amundsen-Scott station experienced extreme warming event in July,with the temperature increasing by 40℃ in one day.Abnormal cooling was evident in the Ross Sea and neighboring regions which were predominantly winter(June-August)cold anomalies,with Marylin Station reaching the lowest winter temperature in history.The Arctic experienced the warmest summer after 1979,with an overall distribution of warm land-cold sea'on annual average.Compared with the 1991-2020 average,the annual air temperature anomalies reached more than 2℃in northern Canada and the Barents Sea-Kara Sea coast.Abnormal high summer temperature caused most severe wildfires in Canada on record and second largest daily cumulative melt area over the Greenland ice Sheet daily post-1979.Polar sea ice continued to decrease rapidly,with minimum sea ice extent in Antarctic and Arctic ranking the first and sixth lowest post-1979.For melt season,Arctic Ocean sea ice began to melt later in 2023 than the 2011-2023 average,and freeze onset was delayed due to high temperatures in summer and autumn.Additionally,the status of polar atmospheric greenhouse gases remains bleak,and major greenhouse gas concentrations continue to increase.The Antarctic ozone hole in 2023 formed approximately 10 d earlier and lasted longer than the 1979-2023 average,with a maximum daily area of 2.6×10^(7)km^(2) on 21 September.This summary of polar climate changes in 2023 will help people better understand global climate change and draw attention to polar regions.
基金supported by the National Natural Science Foundation of China (41605036 and 41305053)the National Key Research and Development Program of China (2016YFA0602703)+1 种基金the National-Level Major Cultivation Project of Guangdong Province (2014GKXM058)the Open Project of the State Key Laboratory of Cryospheric Science (SKLCS-OP-2016-09)
文摘Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project (No.2018ZX07110003)the National Natural Science Foundation of China (No.51779068)。
文摘Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.
基金supported by the Fundamental Research Funds for the Central Universities(2012YBXS27)the National Key Program for Global Change Research of China(2010CB950500)
文摘The carbon cycle is one of the fundamental climate change issues.Its long-term evolution largely affects the amplitude and trend of human-induced climate change,as well as the formulation and implementation of emission reduction policy and technology for stabilizing the atmospheric CO2concentration.Two earth system models incorporating the global carbon cycle,the Community Earth System Model and the Beijing Normal University-Earth System Model,were used to investigate the effect of the carbon cycle on the attribution of the historical responsibility for climate change.The simulations show that when compared with the criterion based on cumulative emissions,the developed(developing)countries’responsibility is reduced(increased)by 6%–10%using atmospheric CO2concentration as the criterion.This discrepancy is attributed to the fact that the developed world contributed approximately61%–68%(61%–64%)to the change in global oceanic(terrestrial)carbon sequestration for the period from 1850 to2005,whereas the developing world contributed approximately 32%–49%(36%–39%).Under a developed world emissions scenario,the relatively larger uptake of global carbon sinks reduced the developed countries’responsibility for carbon emissions but increased their responsibility for global ocean acidification(68%).In addition,the large emissions from the developed world reduced the efficiency of the global carbon sinks,which may affect the long-term carbon sequestration and exacerbate global warming in the future.Therefore,it is necessary to further consider the interaction between carbon emissions and the carbon cycle when formulating emission reduction policy.
基金the National Natural Science Foundation of China (31130039, 30671258)the Genetically Modified Organisms Breeding Major Projects, China (2009ZX08009-118B)the Program for New Century Excellent Talents in University from the Ministry of Education, China (NCET-07-0712)
文摘Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tfidemorph, a sterol biosynthetic inhibitor. The inhibition of phy- tosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phy- tosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher con- centrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, dur- ing the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cot- ton fiber development, and particularly in fiber elongation.