The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain,the transition zone between the Dabie Moun...The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain,the transition zone between the Dabie Mountain Area and Jianghan Plain.It’s a great field test site to study the material and energy exchange among rainfall,soil moisture,and groundwater of the Earth’s critical zone in subtropical monsoon climate plain areas.This paper analyzed the connection between rainfall and volume water content(VWC)of soil at different depths of several soil profiles,and the dynamic feature of groundwater was discussed,which reveals the rainfall infiltration recharge of Quaternary Upper Pleistocene strata.The results show that the Quaternary Upper Pleistocene aquifer groundwater accepts a little direct rainfall recharge,while the lateral recharge is the main supplement source.There were 75 effective rainfall events among 120 rainfall events during the monitoring period,with an accumulated amount of 672.9 mm,and the percentages of effective rainfall amount and duration time were 62.50%and 91.56%,respectively.The max evaporation depth at the upper part in Quaternary cohesive soil was no less than 1.4 m.The soil profile was divided into four zones:(1)The sensitive zone of rainfall infiltration within 1.4 m,where the material and energy exchange frequently near the interface between atmosphere and soil;(2)the buffer zone of rainfall infiltration between 1.4 m and 3.5 m;(3)the migration zone of rainfall infiltration between 3.5 m and 5.0 m;and(4)the rainfall infiltration and groundwater level co-influenced zone below 5.0 m.The results revealed the reaction of soil moisture and groundwater to rainfall in the area covered by cohesive soil under humid climate in Earth’s critical zone,which is of great theoretical and practical significance for groundwater resources evaluation and development,groundwater environmental protection,ecological environmental improvement,drought disaster prevention,and flood disaster prevention in subtropical monsoon climate plain areas.展开更多
The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have m...The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have many bird dispersers, the influence of dominant and non-dominant dispersers on retention time (dispersal distance) and germination remains poorly understood. In this study we performed experiments with captive frugivorous birds and fruiting plant species to study the effects of dominant and non-dominant dispersers on seed retention time (SRT) and germination (seed germination percentage and germination speed). Our study showed a great interspecific variation in the effects of frugivorous birds on both SRT and germination. Some birds enhance the germination of a given plant species, but others do not. Generally, the dominant visitors improved the seed germination and performed longer seed retention time.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be ...We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model,including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy,and out-of-time-order correlation(OTOC) functions. For systems of size up to N=20, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.展开更多
基金the project“1:50000 regional hydrogeological survey in the Dabie Mountains contiguous destitute area”(121201009000172522)from Wuhan Center of Geological Survey,China Geological Survey(CGS).
文摘The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain,the transition zone between the Dabie Mountain Area and Jianghan Plain.It’s a great field test site to study the material and energy exchange among rainfall,soil moisture,and groundwater of the Earth’s critical zone in subtropical monsoon climate plain areas.This paper analyzed the connection between rainfall and volume water content(VWC)of soil at different depths of several soil profiles,and the dynamic feature of groundwater was discussed,which reveals the rainfall infiltration recharge of Quaternary Upper Pleistocene strata.The results show that the Quaternary Upper Pleistocene aquifer groundwater accepts a little direct rainfall recharge,while the lateral recharge is the main supplement source.There were 75 effective rainfall events among 120 rainfall events during the monitoring period,with an accumulated amount of 672.9 mm,and the percentages of effective rainfall amount and duration time were 62.50%and 91.56%,respectively.The max evaporation depth at the upper part in Quaternary cohesive soil was no less than 1.4 m.The soil profile was divided into four zones:(1)The sensitive zone of rainfall infiltration within 1.4 m,where the material and energy exchange frequently near the interface between atmosphere and soil;(2)the buffer zone of rainfall infiltration between 1.4 m and 3.5 m;(3)the migration zone of rainfall infiltration between 3.5 m and 5.0 m;and(4)the rainfall infiltration and groundwater level co-influenced zone below 5.0 m.The results revealed the reaction of soil moisture and groundwater to rainfall in the area covered by cohesive soil under humid climate in Earth’s critical zone,which is of great theoretical and practical significance for groundwater resources evaluation and development,groundwater environmental protection,ecological environmental improvement,drought disaster prevention,and flood disaster prevention in subtropical monsoon climate plain areas.
基金Foundation items: This study was supported by funding from the National Nature Science Foundation of China (31370452) and the Chinese Academy of Science (KSCX2-EW-Q- 17).ACKNOWLEDGEMENTS We thank Shan*Wen SUN from University of Bayreuth for statistical suggestion and helping with the experiment. The manuscript was improved by comments from Ming-Xia ZHANG (Xishuangbanna Tropical Botanical Garden), Charlotte CHANG (Princeton University) and Eben GOODALE (Guangxi University),
文摘The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have many bird dispersers, the influence of dominant and non-dominant dispersers on retention time (dispersal distance) and germination remains poorly understood. In this study we performed experiments with captive frugivorous birds and fruiting plant species to study the effects of dominant and non-dominant dispersers on seed retention time (SRT) and germination (seed germination percentage and germination speed). Our study showed a great interspecific variation in the effects of frugivorous birds on both SRT and germination. Some birds enhance the germination of a given plant species, but others do not. Generally, the dominant visitors improved the seed germination and performed longer seed retention time.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
基金This work was supported by the National Natural Science Foundation of China(11434011,11522436,11774425,11704029)the National Key R&D Program of China(2018YFA0306501)+1 种基金the Beijing Natural Science Foundation(Z180013)the Research Funds of Renmin University of China(16XNLQ03 and 18XNLQ15)。
文摘We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model,including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy,and out-of-time-order correlation(OTOC) functions. For systems of size up to N=20, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.