期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Effect of C/N Ratio,Temperature,pH on Autotrophic Denitrification Rate with Hydrogen Gas,Iron(Ⅱ) and Sodium Sulfide as Electron Donors
1
作者 Junfeng Su Sicheng Shao +4 位作者 tinglin huang Fang Ma Gang Wen Shengchen Zheng Kai Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期90-96,共7页
Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir s... Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir sediments and utilize different electron donors for isolates to improve nitrate removal efficiency. Using traditional enrichment approach,one purified anaerobic bacterium( Y12) capable of NO-3-N removal from sediments was obtained. The species identity of Y12 was determined via 16 S rRNA gene sequence analysis to be Acinetobacter. In this work,the fastest denitrification rates were observed with ferrous iron as electron donor.And,slightly slower rates were observed with hydrogen and sodium sulfide as electron donors. However,when used hydrogen gas, ferrous iron and sodium sulfide as electron donors, C / N ratios had little effect on autotrophic denitrification rate at the initial C / N ratio from 1.5 to 9.0. Meanwhile,when made use of hydrogen gas,ferrous iron and sodium sulfide as electron donors,a maximum nitrate removal ratio of 100.00%,91.43%and 87.99% at the temperature of 30 ℃,respectively. Moreover,maximum denitrification activity was observed at p H 6.0-7.0. 展开更多
关键词 EUTROPHICATION electron donor NITRATE Acinetobacter sp autotrophic denitrification
下载PDF
Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir
2
作者 Haihan Zhang Sixuan Pan +6 位作者 BenMa tinglin huang Dmitry B.Kosolapov Manli Ma Xiang Liu Huan Liu Xiaoyan Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期1-17,共17页
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle,but little is known about the seasonal variation of actinobacterial community in... Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle,but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment.In this study,the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons.The results showed that the highest diversity and abundance of actinobacterial community occurred in winter,with Sporichthya(45.42%)being the most abundant genus and Rhodococcus sp.(29.32%)being the most abundant species.Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were infuenced by more factors and Nocardioides sp.SX2R5S2 was the potential keystone species which was negatively correlated with temperature(R=-0.72,P<0.05).Changes in environmental factors could significantly affect the changes in actinobacterial community,and the dynamics of temperature,dissolved oxygen(DO),and turbidity are potential conspicuous factors infuencing seasonal actinobacterial community trends.The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities,while the physiochemical parameters(path coefficient=1.571,P<0.05)was strong environmental factors in natural mixture period.These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources. 展开更多
关键词 Source water reservoir High-throughput sequencing Correlation analysis Network analysis Partial least squares path modeling
原文传递
Comparing Mn-based oxides filters started by KMnO_(4)versus K_(2)FeO_(4)for ammonium and manganese removal:Formation mechanism of active species
3
作者 Ya Cheng Fengkai Shi +3 位作者 tinglin huang Anqi Miao Gang Wen Chunwei Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第11期180-192,共13页
A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and ... A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and reductants(MnSO_(4)and FeCl_(2))were used during the start-up period.Filter R3 started up by KMnO_(4)and FeCl_(2)(Mn^(7+)→MnO_(x))exhibited excellent catalytic property,and the NH_(4)^(+)-N and Mn^(2+)removal efficiency reached over 80%on the 10th and 35th days,respectively.Filter R1 started up by K_(2)FeO_(4)and MnSO_(4)(MnO_(x)←Mn^(2+))exhibited the worst catalytic property.Filter R2 started up by KMnO_(4)and MnSO_(4)(Mn^(7+)→MnO_(x)←Mn^(2+))were in between.According to Zeta potential results,the Mn-based oxides(MnO_(x))formed by Mn^(7+)→MnO_(x)performed the highest pHIEP and pHPZC.The higher the pHIEP and pHPZC,the more unfavorable the cation adsorption.However,it was inconsistent with its excellent Mn^(2+)and NH_(4)^(+)-N removal abilities,implying that catalytic oxidation played a key role.Combined with XRD and XPS analysis,the results showed that the MnO_(x)produced by the reduction of KMnO_(4)showed early formation of buserite crystals,high degree of amorphous,high content of Mn3+and lattice oxygen with the higher activity to form defects.The above results showed that MnO_(x)produced by the reduction of KMnO_(4)was more conducive to the formation of active species for catalytic oxidation of NH_(4)^(+)-N and Mn^(2+)removal.This study provides new insights on the formation mechanisms of the active MnO_(x)that could catalytic oxidation of NH_(4)^(+)-N and Mn^(2+). 展开更多
关键词 AMMONIUM Manganese Mn-based oxide Filter START-UP Active species
原文传递
NirS-type denitrifying bacteria in aerobic water layers of two drinking water reservoirs: Insights into the abundance, community diversity and co-existence model 被引量:1
4
作者 Haihan Zhang Yinjie Shi +6 位作者 tinglin huang Rongrong Zong Zhenfang Zhao BenMa Nan Li Shangye Yang Mengqiao Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期215-226,共12页
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial ... The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction(qPCR)and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structure in two drinking water reservoirs.The overall results showed that the water quality parameters in two reservoirs had obvious differences.The qPCR results suggested that nirS gene abundance ranged from(2.61±0.12)×10^(5) to(3.68±0.16)×10^(5) copies/mL and(3.01±0.12)×10^(5) to(5.36±0.31)×10^(5) copies/mL in Jinpen and Lijiahe reservoirs,respectively.The sequencing results revealed that Paracoccus sp.,Azoarcus sp.,Dechloromonas sp.and Thauera sp.were the dominant genera observed.At species level,Cupriavidus necator,Dechloromonas sp.R-28400,Paracoccus denitrificans and Pseudomonas stutzeri accounted for more proportions in two reservoirs.More importantly,the co-occurrence network analysis demonstrated that Paracoccus sp.R-24615 and Staphylococcus sp.N23 were the keystone species observed in Jinpen and Lijiahe reservoirs,respectively.Redundancy analysis indicated that water quality(particularly turbidity,water temperature,pH and Chlorophyll a)and sampling time had significant influence on the nirS-type denitrifying bacterial community in both reservoirs.These results will shed new lights on exploring the dynamics of nirS-type denitrifying bacteria in aerobic water layers of drinking water reservoirs. 展开更多
关键词 Drinking water reservoirs Aerobic water layers Denitrifying bacterial community NirS gene Co-occurrence network model
原文传递
Water-lifting and aeration system improves water quality of drinking water reservoirs: Biological mechanism and field application
5
作者 Liqing Kou tinglin huang +5 位作者 Haihan Zhang Kai Li Fengyao Hua Cheng huang Xiang Liu Fan Si 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第7期174-188,共15页
Reservoirs have been served as the major source of drinking water for dozens of years.The water quality safety of large andmedium reservoirs increasingly becomes the focus of public concern.Field test has proved that ... Reservoirs have been served as the major source of drinking water for dozens of years.The water quality safety of large andmedium reservoirs increasingly becomes the focus of public concern.Field test has proved that water-lifting and aeration system(WLAS)is a piece of effective equipment for in situ control and improvement of water quality.However,its intrinsic bioremediation mechanism,especially for nitrogen removal,still lacks in-depth investigation.Hence,the dynamic changes inwater quality parameters,carbon source metabolism,species compositions and co-occurrence patterns ofmicrobial communitieswere systematically studied in Jinpen Reservoir within a wholeWLAS running cycle.TheWLAS operation could efficiently reduce organic carbon(19.77%),nitrogen(21.55%)and phosphorus(65.60%),respectively.Biolog analysis revealed that the microbialmetabolic capacitieswere enhanced viaWLAS operation,especially in bottomwater.High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water.The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas.Furthermore,network analysis revealed that microorganisms interacted more closely through WLAS operation.Oxidation-reduction potential(ORP)and total nitrogen(TN)were regarded as the two main physicochemical parameters influencing microbial community structures,as confirmed by redundancy analysis(RDA)and Mantel test.Overall,the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water. 展开更多
关键词 Water-lifting and aeration system Drinking water reservoir Co-occurrence network Biological mechanism
原文传递
Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis 被引量:9
6
作者 Haihan Zhang Huiyan He +6 位作者 Shengnan Chen tinglin huang Kuanyu Lu Zhonghui Zhang Rong Wang Xueyao Zhang Hailong Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第8期24-38,共15页
Wastewater treatment plants(WWTPs) are deemed reservoirs of antibiotic resistance genes(ARGs). Bacterial phylogeny can shape the resistome in activated sludge. However, the co-occurrence and interaction of ARGs abunda... Wastewater treatment plants(WWTPs) are deemed reservoirs of antibiotic resistance genes(ARGs). Bacterial phylogeny can shape the resistome in activated sludge. However, the co-occurrence and interaction of ARGs abundance and bacterial communities in different WWTPs located at continental scales are still not comprehensively understood. Here, we applied quantitative PCR and Miseq sequence approaches to unveil the changing profiles of ARGs(sul1, sul2, tet W, tet Q, tet X), int I1 gene, and bacterial communities in 18 geographically distributed WWTPs. The results showed that the average relative abundance of sul1 and sul2 genes were 2.08 × 10^(-1) and 1.32 × 10^(-1) copies/16 S rRNA copies, respectively. The abundance of tet W gene was positively correlated with the Shannon diversity index(H′), while both studied sul genes had significant positive relationship with the int I1 gene. The highest average relative abundances of sul1, sul2, tet X, and int I1 genes were found in south region and oxidation ditch system. Network analysis found that 16 bacterial genera co-occurred with tet W gene. Co-occurrence patterns were revealed distinct community interactions between aerobic/anoxic/aerobic and oxidation ditch systems. The redundancy analysis model plot of the bacterial community composition clearly demonstrated that the sludge samples were significant differences among those from the different geographical areas,and the shifts in bacterial community composition were correlated with ARGs. Together,these findings from the present study will highlight the potential risks of ARGs and bacterial populations carrying these ARGs, and enable the development of suitable technique to control the dissemination of ARGs from WWTPs into aquatic environments. 展开更多
关键词 Antibiotic resistance GENES ACTIVATE SLUDGE BACTERIAL community Network analysis Mobile genetic elements
原文传递
Structural characteristic and ammonium and manganese catalytic activity of two types of filter media in groundwater treatment 被引量:9
7
作者 Ya Cheng tinglin huang +3 位作者 Lijie Cheng Yuankui Sun Laisheng Zhu Ye Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第10期89-97,共9页
Two types of filter media in groundwater treatment were conducted for a comparative study of surface structure and catalytic performance. Natural filter media was adopted from a conventional aeration–filtration groun... Two types of filter media in groundwater treatment were conducted for a comparative study of surface structure and catalytic performance. Natural filter media was adopted from a conventional aeration–filtration groundwater treatment plant, and active filter media as a novel and promising filter media was also adopted. The physicochemical properties of these two kinds of filter media were characterized using numerous analytical techniques,such as X-Ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray(EDX), X-ray photoelectron spectroscopy(XPS) and Zeta potential. The catalytic activities of these filter media were evaluated for ammonium and manganese oxidation.XRD data showed that both active filter media and natural filter media belonged to birnessite family. A new manganese dioxide(Mn O2) phase(PDF#72-1982) was found in the structure of natural filter media. The SEM micrograph of natural filter media showed honeycomb structures and the active filter media presented plate structures and consisted of stacked particle. These natural filter media presented lower level of some trace elements such as calcium and magnesium, lower degree of crystallinity, lower Mn(III) content and lattice oxygen content than that of active filter media, which were associated with its poor ammonium and manganese catalytic activities. In addition, some γ-Fe2 O3 and Mn CO3 were found in the coating which may hinder the ammonium and manganese catalytic oxidation. This study provides a thorough and comprehensive understanding about the most commonly used filter media in water treatment, which can provide a theoretical guide to practical applications. 展开更多
关键词 Natural filter media Active filter media Manganese and ammonium removal Manganese oxides Characterization ACTIVITY
原文传递
Sediment pollution characteristics and in situ control in a deep drinking water reservoir 被引量:8
8
作者 Zizhen Zhou tinglin huang +3 位作者 Yang Li Weixing Ma Shilei Zhou Shenghai Long 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期223-231,共9页
Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon(OC), total nitro... Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon(OC), total nitrogen(TN), and total phosphorus(TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and Na OH-extractable P(Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe,and Mn reached 4.42 mg/L, 3.33 mg/L, 0.22 mg/L, 2.56 mg/L, and 0.61 mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. 展开更多
关键词 Sediment pollution In situ reactor Water-lifting aerator Sediment release inhibition
原文传递
The simultaneous removal of ammonium and manganese from surface water by MeO_x:Side effect of ammonium presence on manganese removal 被引量:6
9
作者 Xuan Tian Ruifeng Zhang +1 位作者 tinglin huang Gang Wen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第3期346-353,共8页
Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simult... Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simultaneous removal of ammonium and manganese from surface water using a manganese co-oxide filter film(MeO_x ). The results showed that the manganese removal efficiency of MeO_x in the absence of ammonium was high and stable, and the removal efficiency could reach 70% even at 5.5 °C. When the influent ammonium concentration was lower than 0.7 mg/L, ammonium and manganese could be removed simultaneously. However, at an ammonium concentration of 1.5 mg/L, the manganese removal efficiency of the filter gradually decreased with time(from 96% to 46.20%). Nevertheless, there was no impact of manganese on ammonium removal. The mechanism by which ammonium negatively affected manganese removal was investigated, demonstrating that ammonium affected manganese removal mainly through two possible mechanisms. On one hand, the decreased p H caused by ammonium oxidation was unfavorable for the oxidation of manganese by MeO_x ; on the other hand, the presence of ammonium slowed the growth of new MeO_x and retarded the increase in the specific surface area of the Me Ox-coated sand, and induced changes in the morphology and crystal structure of Me Ox. Consequently, the manganese removal efficiency of the filter decreased when ammonium was present in the inlet water. 展开更多
关键词 Surface water MANGANESE AMMONIUM MeO_x SIDE effect
原文传递
A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator 被引量:5
10
作者 Beibei Chai tinglin huang +1 位作者 Weihuang Zhu Fengying Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第12期1977-1982,共6页
Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more eff... Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its effciency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean effciency (E) in different reactors 2#–5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting effciency was, and PAM addition strengthened the inhibiting effciency significantly. For Fe2+, the corresponding values of E for the reactors 2#–5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average effciencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#–5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further. 展开更多
关键词 deep reservoir chemical stabilization water lifting aerator (WLA) phosphate release coagulants PAC and PAM
原文传递
Destratification and oxygenation efficiency of a water-lifting aerator system in a deep reservoir:Implications for optimal operation 被引量:4
11
作者 Yang Li tinglin huang +2 位作者 Xinlin Tan Zizhen Zhou Weixing Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第11期9-19,共11页
Thermal stratification is a common phenomenon in lakes and reservoirs and has a significant influence on water quality dynamics. Heihe Reservoir is a canyon-shaped reservoir in Shaanxi Province with strong thermal str... Thermal stratification is a common phenomenon in lakes and reservoirs and has a significant influence on water quality dynamics. Heihe Reservoir is a canyon-shaped reservoir in Shaanxi Province with strong thermal stratification. Therefore, eight water-lifting aerators (WLAs) were installed in this reservoir, which could overcome thermal stratification and increase oxygenation with gas flows between 20 and 50 m3/hr, and oxygenate the hypolimnion with gas flows less than 20 m3/hr. To examine the destratification efficiency of the WLA system, we used a three- dimensional hydrodynamic module based on MIKE 3 to simulate the thermal structure of Heihe Reservoir and compared the simulations with measured data. Results showed that operation of the WLA system promoted water mixing and effectively oxygenated the hypolimnion. Through the established energy utilization assessment method, the energy utilization efficiency of the WLA system was between 5.36% and 7.30%, indicating the capability of the technique for destratification in such a large reservoir. When the surface water temperature dropped to the theoretical mixed water temperature calculated by the energy utilization assessment method, reducing gas flow could save energy. This would prevent anaerobic conditions from occurring in the bottom water and maintain good water quality in Heihe Reservoir. 展开更多
关键词 RESERVOIR Thermal stratification Numerical simulation Water-lifting aerator MIXING OXYGENATION
原文传递
A comparison study of the start-up of a MnO_x filter for catalytic oxidative removal of ammonium from groundwater and surface water 被引量:4
12
作者 Ya Cheng Ye Li +3 位作者 tinglin huang Yuankui Sun Xinxin Shi Yuezong Shao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期327-334,共8页
As an efficient method for ammonium(NH4~+)removal,contact catalytic oxidation technology has drawn much attention recently,due to its good low temperature resistance and short start-up period.Two identical filters ... As an efficient method for ammonium(NH4~+)removal,contact catalytic oxidation technology has drawn much attention recently,due to its good low temperature resistance and short start-up period.Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater(Filter-N)and surface water(Filter-S)treatment.Two types of source water(groundwater and surface water)were used as the feed waters for the filtration trials.Although the same initiating method was used,Filter-N exhibited much better ammonium removal performance than Filter-S.The differences in catalytic activity among these two filters were probed using X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),and compositional analysis.XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S.Furthermore,the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S(FS-MnOx)was higher than in the film collected from Filter-N(FN-MnOx).Mn(IV)was identified as the predominant oxidation state in FS-MnOxand Mn(III)was identified as the predominant oxidation state in FN-MnOx.The results of compositional analyses suggested that polyaluminum ferric chloride(PAFC)used during the surface water treatment was an important factor in the mineralogy and reactivity of MnOx.This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. 展开更多
关键词 Ammonium removal Surface water Underground water START-UP Catalytic oxidation FILTRATION
原文传递
Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir 被引量:5
13
作者 Lingyun Zhao Nan Li +6 位作者 tinglin huang Haihan Zhang Fan Si Kai Li Yunzhi Qi Fengyao Hua Cheng huang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期130-140,共11页
Naturally complete mixing promotes the spontaneous redistribution of dissolved oxygen(DO),representing an ideal state for maintaining good water quality,and conducive to the biomineralization of organic matter.Water l... Naturally complete mixing promotes the spontaneous redistribution of dissolved oxygen(DO),representing an ideal state for maintaining good water quality,and conducive to the biomineralization of organic matter.Water lifting aerators(WLAs)can extend the periods of complete mixing and increase the initial mixing temperature.To evaluate the influence of artificial-induced continuously mixing on dissolved organic matter(DOM)removal performance,the variations of DOM concentrations,optical characteristic,environmental factors were studied after approaching the total mixing status via WLAs operation.During this process,the dissolved organic carbon reduced by 39.18%,whereas the permanganate index decreased by 20.47%.The optical properties indicate that the DOM became more endogenous and its molecular weight decreased.Based on the results of the Biolog Eco Plates,the microorganisms were maintained at a relatively high metabolic activity in the early stage of induced mixing when the mixing temperature was relatively high,whereas DOM declined at a high rate.With the continuous decrease in the water temperature,both the metabolic capacity and the diversity of aerobic microorganisms significantly decreased,and the rate of organic matter mineralization slowed down.The results of this study demonstrate that the artificial induced mixing largely enhanced the removal DOM performance by providing a long period of aerobic conditions and higher initial temperature. 展开更多
关键词 Artificial destratification systems Organic matter Lake and reservoir management EEMs-PARAFAC
原文传递
Aging of PVDF and PES ultrafiltration membranes by sodium hypochlorite:Effect of solution pH 被引量:3
14
作者 Kai Li Qian Su +2 位作者 Shu Li Gang Wen tinglin huang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第6期444-455,共12页
Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membr... Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membranes,and ultimately shorten membrane lifespan.Active species in NaClO solution vary with solution pH,and the aging effects can change depending on the membrane material.In this study,the aging of polyvinylidene fluoride(PVDF)and polyethersulfone(PES)membranes by NaClO at pH 3–11 was investigated by examining variations in chemical composition,surface charge,surface morphology,mechanical strength,permeability,and retention ability.Polyvinyl pyrrolidone(PVP),which was blended in both membranes,was oxidized and dislodged due to NaClO aging at all investigated pH values,but the oxidation products and dislodgement ratio of PVP varied with solution pH.For the PVDF membrane,NaClO aging at pH 3–11 caused a moderate increase in permeability and decreased retention due to the oxidation and release of PVP.The tensile strength decreased only at pH 11 because of the defluorination of PVDF molecules.For the PES membrane,NaClO aging at all investigated pH resulted in chain scission of PES molecules,which was favored at pH 7 and 9,potentially due to the formation of free radicals.Therefore,a decrease in tensile strength and retention ability,as well as an increase in permeability,occurred in the PES membrane for NaClO aging at pH 3–11.Overall,the results can provide a basis for selecting chemical cleaning conditions for PVDF and PES membranes. 展开更多
关键词 Polymeric ultrafiltration(UF)membrane Membrane aging Sodium hypochlorite(NaClO) Membrane properties Performance factors
原文传递
Removal of ammonium ion from water by Na-rich birnessite:Performance and mechanisms 被引量:12
15
作者 Ya Cheng tinglin huang +2 位作者 Xinxin Shi Gang Wen Yuankui Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第7期402-410,共9页
Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption perf... Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption performance of the synthesized material,the effects of contact time,pH,initial ammonium ion concentration,and temperature were investigated.Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model.The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated.The monolayer adsorption capacity of the adsorbent,as obtained from the Langmuir isotherm,was 22.61 mg NH+4-N/g at283 K.Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process.Our data revealed that the higher NH+4adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction.Particularly,the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion.The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system. 展开更多
关键词 Ammonium ion adsorption Na-rich birnessite Hydroxyl ions Negatively charged surface Electrostatic interaction
原文传递
Nitrogen reduction using bioreactive thin-layer capping(BTC)with biozeolite: A field experiment in a eutrophic river 被引量:8
16
作者 Zhenming Zhou tinglin huang Baoling Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期119-125,共7页
Bioreactive thin-layer capping(BTC)with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies.Nitrogen(N)reductio... Bioreactive thin-layer capping(BTC)with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies.Nitrogen(N)reduction using BTC with biozeolite was examined in a field incubation experiment in a eutrophic river in Yangzhou,Jiangsu Province,China.The biozeolite was zeolite with attached bacteria,including two isolated heterotrophic nitrifiers(Bacillus spp.)and two isolated aerobic denitrifiers(Acinetobacter spp.).The results showed that the total nitrogen(TN)reduction efficiency of the overlying water by BTC with biozeolite(with thickness of about 2 mm)reached a maximum(56.69%)at day 34,and simultaneous heterotrophic nitrification and aerobic denitrification occurred in the BTC system until day 34.There was a significant difference in the TN concentrations of the overlying water between biozeolite capping and control(t-test;p〈0.05).The biozeolite had very strong in situ bioregeneration ability.Carbon was the main source of nitrifier growth.However,both dissolved oxygen(DO)and carbon concentrations affected denitrifier growth.In particular,DO concentrations greater than 3 mg/L inhibited denitrifier growth.Therefore,BTC with biozeolite was found to be a feasible technique to reduce N in a eutrophic river.However,it is necessary to further strengthen the adaptability of aerobic denitrifiers through changing domestication methods or conditions. 展开更多
关键词 Bioreactive thin-layer capping (BTC) Simultaneous nitrification and denitrification (SND) Biozeolite Eutrophic river
原文传递
Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide 被引量:6
17
作者 Yingming Guo tinglin huang +1 位作者 Gang Wen Xin Cao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期20-27,共8页
To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone(O3), hydrogen peroxide(H2O2) and chlorine dioxide(Cl O2)were examined to peel off the film fro... To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone(O3), hydrogen peroxide(H2O2) and chlorine dioxide(Cl O2)were examined to peel off the film from the quartz sand surface in four pilot-scale columns.An optimized oxidant dosage and oxidation time were determined by batch tests.Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33(H2O2)and to 53.67 hr(ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments.Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation;but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal(from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy.Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. 展开更多
关键词 Pilot-scale Ozone Hydrogen peroxide Chlorine dioxide Backwashing interval
原文传递
The formation kinetics and control of biofilms by three dominant fungi species isolated from groundwater 被引量:1
18
作者 Xinyu Luo Xiangqian Xu +6 位作者 Ruihua Cao Qiqi Wan Jingyi Wang Huining Xu Yingzi Lin Gang Wen tinglin huang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第11期148-160,共13页
Filamentous fungi can enter drinking water supply systems in various ways,and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections.In this study,t... Filamentous fungi can enter drinking water supply systems in various ways,and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections.In this study,the biofilms formation kinetics of the three genera of fungal spores,Aspergillus niger(A.niger),Penicillium polonicum(P.polonicum)and Trichoderma harzianum(T.harzianum)isolated fromthe groundwater were reported,as well as the effects of water quality parameters were evaluated.In addition,the efficiency of low-concentrations of chlorine-based disinfectants(chlorine,chlorine dioxide and chloramine)on controlling the formation of fungal biofilms was assessed.The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases:induction,exponential,stationary and sloughing off.The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28°C with rich nutrition.In fact,A.niger,P.polonicum,and T.harzianum were not observed to form mature biofilms in actual groundwater within 120 hr.Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater,followed by nitrogen and phosphorus.The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order:A.niger>T.harzianum>P.polonicum.Chlorine dioxide was observed to control the biofilms formation with maximum efficiency,followed by chlorine and chloramine.Consequently,the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms. 展开更多
关键词 Filamentous fungi Biofilms Formation kinetics Chlorine-based disinfectants Control
原文传递
Inactivation and subsequent reactivation of Aspergillus species by the combination of UV and monochloramine: Comparisons with UV/chlorine 被引量:1
19
作者 Gehui Wu Hui Zhao +7 位作者 Qiqi Wan Xiangqian Xu Ruihua Cao Kai Li Jingyi Wang tinglin huang Jinsuo Lu Gang Wen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第7期105-118,共14页
Ultraviolet(UV)/monochloramine(NHCl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of U... Ultraviolet(UV)/monochloramine(NHCl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NHCl process, ii) compared with UV/Clin inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NHCl showed better inactivation efficiency than that of UV alone and UV/Cl, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NHCl(2.0 mg/L) was 0.034, 0.030 and 0.061 cm^(2)/m J), respectively, which were higher than that of UV alone(0.027, 0.026 and 0.024 cm^(2)/m J) and UV/Cl(0.023, 0.026 and 0.031 cm^(2)/m J). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log 10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets(hydrophobins) and pigments. After UV/NHCl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NHCl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi. 展开更多
关键词 Aspergillus species UV/NH2Cl disinfection Synergistic effect UV/Cl2 disinfection PHOTOREACTIVATION
原文传递
Effects of benthic hydraulics on sediment oxygen demand in a canyon-shaped deep drinking water reservoir:Experimental and modeling study
20
作者 Nan Li tinglin huang +1 位作者 Zhiying Chang Kai Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第4期226-234,共9页
Sediment oxygen demand(SOD)is a major contributor to hypolimnetic oxygen depletion and the release of internal nutrient loading.By measuring the SOD in experimental chambers using in both dissolved oxygen(DO)depletion... Sediment oxygen demand(SOD)is a major contributor to hypolimnetic oxygen depletion and the release of internal nutrient loading.By measuring the SOD in experimental chambers using in both dissolved oxygen(DO)depletion and diffusional oxygen transfer methods,a model of SOD for a sediment bed with water current-induced turbulence was presented.An experimental study was also performed using near-sediment vertical DO profiles and correlated hydraulic parameters stimulated using a computational fluid dynamics model to determine how turbulences and DO concentrations in the overlying water affects SOD and diffusive boundary layer thickness.The dependence of the oxygen transfer coefficient and diffusive boundary layer on hydraulic parameters was quantified,and the SOD was expressed as a function of the shear velocity and the bulk DO concentrations.Theoretical predictions were validated using microelectrode measurements in a series of laboratory experiments.This study found that flow over the sediment surface caused an increase in SOD,attributed to enhanced sediment oxygen uptake and reduced substances fluxes,i.e.,for a constant maximum biological oxygen consumption rate,an increased current over the sediment could increase the SOD by 4.5 times compared to stagnant water.These results highlight the importance of considering current-induced SOD increases when designing and implementing aeration/artificial mixing strategies. 展开更多
关键词 Sediment oxygen demand Sediment-water flux Diffusive boundary layer thickness Turbulence Biological oxygen consumption
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部