期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高分子交替多层结构的隔声特性仿真 被引量:2
1
作者 马玉欣 钟庭生 +2 位作者 圣小珍 李姜 邓铁松 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2019年第10期96-101,共6页
使用有限元仿真方法对高分子交替多层结构的隔声特性进行了研究,构建了阻抗管测试的平面波声场和高分子多层复合材料模型,使用LMS Virtual. Lab进行了声振耦合计算,得到的隔声量曲线与实验测试结果规律一致。针对聚丙烯(PP)与乙烯-辛烯... 使用有限元仿真方法对高分子交替多层结构的隔声特性进行了研究,构建了阻抗管测试的平面波声场和高分子多层复合材料模型,使用LMS Virtual. Lab进行了声振耦合计算,得到的隔声量曲线与实验测试结果规律一致。针对聚丙烯(PP)与乙烯-辛烯共聚物(POE)的交替层状样品,探究了在100~5000 Hz的计算范围内,层数、层厚比及两组分材料参数对整体隔声性能规律的影响,结果显示16层结构的隔声性能更优。同时,计算了板与多孔材料交替结构的隔声性能,结果表明,在给定的条件下4层结构有更高的隔声量。 展开更多
关键词 交替多层结构 隔声量 有限元 阻抗管
下载PDF
Vibration and sound radiation of a rotating train wheel subject to a vertical harmonic wheel–rail force 被引量:7
2
作者 tingsheng zhong Gong Chen +3 位作者 Xiaozhen Sheng Xueyan Zhan Liqun Zhou Jian Kai 《Journal of Modern Transportation》 2018年第2期81-95,共15页
The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force... The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force. In order to consider the rotation of the wheel and at the same time increase the computational efficiency, a procedure is adapted in this paper taking advantage of the axial symmetry of the wheel. In this procedure, a recently developed 2.5D finite element method, which can consider wheel rotation but only requires a 2D mesh over a cross section containing the wheel axis, is used to calculate the vibration response of the wheel. Then, the vibration response of the wheel is taken as acoustic boundary condition and the 2.5D acoustic boundary element method, which only requires a 1D mesh over the boundary of the above cross section, is utilised to calculate the sound radiation of the wheel. These 2.5D methods and relevant programs are validated by comparing results from this procedure with those from conventional 3D analyses using commercial software. The comparison also demonstrates that these 2.5D methods have a much higher computational efficiency. Using the 2.5D methods, we study the wheel rotation speed influences on the factors including the vertical receptance of the wheel at wheel-rail contact point, sound pressure level at a pre-defined standard measurement point, radiated sound power level, directivity of the radia- tion, and contribution of each part of the wheel. It can be concluded that the wheel rotation speed splits most peaks of the vertical receptance at the wheel-rail contact point, sound pressure levels at the field, and the sound power level of the wheel into two peaks. The directivity and power contribution of the wheel are also significantly changed by the wheel rotation speed. Therefore, the rotation of a train wheel should be taken into account when calculating its vibration and sound radiation. 展开更多
关键词 Train wheel Vibration response Soundradiation 2.5D FEM. 2.5D BEM Rotation effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部