Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of...Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi- tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERKI/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro- tubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.展开更多
Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of...Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of C(sp^(3))-H bonds.Semiconductor photocatalysis can induce the generation of holes and oxidative radicals,off ering an alternative way toward selective oxidation of hydrocarbons under ambient conditions.Herein,we constructed N-doped TiO_(2) nanotubes(N-TNTs)that exhibited remark-able activity and selectivity for toluene oxidation under visible light,delivering the conversion of toluene and selectivity of benzaldehyde of 32% and>99%,respectively.Further mechanistic studies demonstrated that the incorporation of nitrogen induced the generation of N-doping level above the O 2p valance band,directly contributing to the visible-light response of TiO_(2).Furthermore,hydroxyl radicals generated by photogenerated holes at the orbit of O 2p were found to be unselective for the oxidation of toluene,aff ording both benzaldehyde and benzoic acid.The incorporation of nitrogen was able to inhibit the generation of hydroxyl radicals,terminating the formation of benzoic acid.展开更多
Aerobic oxidation by using molecular oxygen(O_(2))as the oxidant is highly attractive,in which activating O_(2)to reactive oxygen species(ROS)is a prerequisite.Although some progress has been achieved in regulating RO...Aerobic oxidation by using molecular oxygen(O_(2))as the oxidant is highly attractive,in which activating O_(2)to reactive oxygen species(ROS)is a prerequisite.Although some progress has been achieved in regulating ROS by heterogeneous catalysts,the strategies to efficiently control ROS in aerobic oxidation are still urgently desired.Herein,grain boundaries(GBs)in metal oxides are discovered to be able to facilely regulate ROS.Impressively,MoO_(3)nanocrystals with high density of GBs(MoO_(3)-600)deliver a mass activity of 83 mmol g^(-1)h^(-1)in aerobic oxidation of benzyl alcohol,7 and 8 times as high as that of MoO_(3)nanoparticles without GBs and Pt/C,respectively.In addition,the selectivity of benzoic acid is 100%during whole reaction process over MoO_(3)-600.Mechanistic studies reveal that the oxygen atoms at GBs in MoO_(3)-600 are highly active to form·OH radicals with the generation of oxygen vacancies,while the oxygen vacancies are replenished by O_(2).The reaction path directly contributes to the excellent catalytic performance.展开更多
The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, o...The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.展开更多
In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost...In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost.The effects of inoculation on physical and chemical parameters,ammonia and hydrogen sulfide release,nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied.The results showed that inoculation of TNB and TSOB increased the temperature,pH,OM degradation,C/N ratio and germination index(GI)of compost.Compared with the control treatment(CK),the addition of inoculants reduced the release of NH_(3) and H_(2)S,and transformed them into nitrogen and sulfur compounds,the hydrolysis of polymeric ferrous sulfate was promoted,resulting in relatively high content of sulfite and sulfate.At the same time,the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.展开更多
Photocatalytic aerobic oxidation by using oxygen molecules(O_(2))as green and low-cost oxidants is of great attraction,where the introduction of irradiation has been proved as an efficient strategy to lower reaction t...Photocatalytic aerobic oxidation by using oxygen molecules(O_(2))as green and low-cost oxidants is of great attraction,where the introduction of irradiation has been proved as an efficient strategy to lower reaction temperature as well as promote catalytic performance.Moreover,the oxygen vacancies(OVs)of catalyst are highly active sites to adsorb and activate O_(2)during photocatalytic aerobic oxidation.However,OVs are easily blocked by oxygen atoms from active oxygen species during the catalytic process,leading to the deactivation of catalysis.Herein,a promising catalyst toward photocatalytic aerobic oxidation was successfully developed by recovering the OVs through doping Au atoms into Ti_(3)C_(2)T_(x)MXene(Au/Ti_(3)C_(2)T_(x)).Impressively,Au/Ti_(3)C_(2)T_(x)exhibited remarkable activity under full-spectrum irradiation towards photooxidation of methyl phenyl sulfide(MPS)and methylene blue(MB),attaining a conversion of>90%at room temperature.Moreover,Au/Ti_(3)C_(2)T_(x)also manifested remarkable stability by maintaining>95%initial activity after 10 successive reaction rounds.Further mechanistic studies indicated that the OVs of Au/Ti_(3)C_(2)T_(x)served as the active centers to efficiently adsorb and activate O_(2).More importantly,the doped Au atoms of Au/Ti_(3)C_(2)T_(x)were conducive to the recovery of OVs during photocatalytic process from the results of theoretical and experimental aspects.The recovered OVs of Au/Ti_(3)C_(2)T_(x)continuously and efficiently activated O_(2),directly contributing to the remarkable catalytic activity and stability.展开更多
To the Editor:Traumatic brain injury(TBI)refers to brain tissue damage caused by trauma.TBI pathogenesis is complicated and the involved molecular targets are also not clear.Astrocytes proliferate and hypertrophy afte...To the Editor:Traumatic brain injury(TBI)refers to brain tissue damage caused by trauma.TBI pathogenesis is complicated and the involved molecular targets are also not clear.Astrocytes proliferate and hypertrophy after brain injury.They have strong tolerance to hypoxia and ischemia to protect neurons in the acute phase of brain injury.展开更多
The electronic paper(E-paper)displays features such as flexibility,sunlight visibility,and low power consumption,which makes it ideal for Internet of Things(IoT)applications where the goal is to eliminate bulky power ...The electronic paper(E-paper)displays features such as flexibility,sunlight visibility,and low power consumption,which makes it ideal for Internet of Things(IoT)applications where the goal is to eliminate bulky power modules.Here,we report a unique self-powered E-paper(SPEP),where information inputs and energy supplies are all converted from mechanical motion by a triboelectric nanogenerator(TENG).The operation of an electrophoretic E-paper is first investigated,identifying the current density as a determinative parameter for driving pigment particle motion and color change.Electrical and optical responses of the E-paper driven by a slidingmode TENG are then found to be consistent with that under a current source mode.All-in-one monochromic and chromatic SPEPs integrated with a flexible transparent TENG are finally demonstrated,and a pixelated SPEP is discussed for future research.The sliding-driven mechanism of SPEP allows for a potential handwriting function,is free of an extra power supply,and promises undoubtedly a wide range of future applications.展开更多
We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in th...We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in the Hilbert space. We prove the existence and uniqueness of the integral solution for this kind of equations with the coefficients satisfying some non-Lipschitz conditions. The results are obtained by using the method of successive approximation.展开更多
Triboelectric nanogenerators(TENGs)represent a promising next‐generation renewable energy technology.TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages o...Triboelectric nanogenerators(TENGs)represent a promising next‐generation renewable energy technology.TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight,broad range of material choices,low cost,and no pollution.However,issues such as input force irregularity,working bandwidth,efficiency calculation,and dynamic modeling hinder the use of TENGs in industrial or practical applications.In this paper,the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow.In addition,this paper reviews the main contributions made in recent years to achieve optimized output based on springs,magnetic forces,and pendulums,and introduces different ways to increase the bandwidth of TENGs.Finally,the main problems of TENGs in the process of harvesting vibration energy are discussed.This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.展开更多
Visible light-based human–machine interactive media is capable of transmitting electrical readouts to machines and providing intuitive feedback to users simultaneously.Currently,many inorganic mechanoluminescent(ML)m...Visible light-based human–machine interactive media is capable of transmitting electrical readouts to machines and providing intuitive feedback to users simultaneously.Currently,many inorganic mechanoluminescent(ML)materials-based interactive media,typically ZnS-loaded phosphors(ZLPs),have been successfully demonstrated.However,organic ML materials-based solutions were rarely exploited despite their huge merits of strong structural modification,abundant luminescence property,low cost,easy preparation,and so on.Here,we propose a novel interactive tactile display(ITD)based on organic ML materials(Cz-A6-dye)and triboelectric nanogenerator,with ultra-brightness(130%enhancement)and ultra-low threshold pressure(57%reduction)as compared to ZLPs.The proposed ITD achieves the conversion of weak mechanical stimuli into visible light and electrical signals simultaneously,without extra power supplies.Furthermore,the relationship between the luminous performance of organic ML materials and mechanical force is quantified,benefiting from the uniform ML layer prepared.Enabled by convolutional neural networks,the high-accuracy recognition(97.1%)for handwriting and identity of users is realized at the same time.Thus,the ITD has great potential for intelligent wearable electronics and classified military applications.展开更多
基金supported by the National Natural Science Foundation of China,No.81350013,81250016the Youth Science Project of National Natural Science Foundation of China,No.81301289the Youth Scientific Research Project of Jilin Provincial Science and Technology Development Plan,No.20130522032JH,20130522039JH
文摘Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi- tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERKI/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro- tubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.
基金the National Natural Science Foundation of China(Nos.22025206,21991094)supported by the Ministry of ScienceTechnology of the People’s Republic of China(No.2018YFE0118100)+1 种基金the CAS-NSTDA Joint Research Project(No.GJHZ2075)Dalian Science and Technology Innovation Fund(No.2019J11CY009).
文摘Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of C(sp^(3))-H bonds.Semiconductor photocatalysis can induce the generation of holes and oxidative radicals,off ering an alternative way toward selective oxidation of hydrocarbons under ambient conditions.Herein,we constructed N-doped TiO_(2) nanotubes(N-TNTs)that exhibited remark-able activity and selectivity for toluene oxidation under visible light,delivering the conversion of toluene and selectivity of benzaldehyde of 32% and>99%,respectively.Further mechanistic studies demonstrated that the incorporation of nitrogen induced the generation of N-doping level above the O 2p valance band,directly contributing to the visible-light response of TiO_(2).Furthermore,hydroxyl radicals generated by photogenerated holes at the orbit of O 2p were found to be unselective for the oxidation of toluene,aff ording both benzaldehyde and benzoic acid.The incorporation of nitrogen was able to inhibit the generation of hydroxyl radicals,terminating the formation of benzoic acid.
基金supported by National Natural Science Foundation of China(Grant no.51801235,11875258,11505187,51374255,51802356,and 51572299)Innovation-Driven Project of Central South University(No.2018CX004)+3 种基金the Start-up Funding of Central South University(No.502045005)the Fundamental Research Funds for the Central Universities(Nos.WK2310000066,WK2060190081)Posdoctoral Science Foundation of China(No.2019M652797)Central South University Postdoctoral Research Opening Fund
文摘Aerobic oxidation by using molecular oxygen(O_(2))as the oxidant is highly attractive,in which activating O_(2)to reactive oxygen species(ROS)is a prerequisite.Although some progress has been achieved in regulating ROS by heterogeneous catalysts,the strategies to efficiently control ROS in aerobic oxidation are still urgently desired.Herein,grain boundaries(GBs)in metal oxides are discovered to be able to facilely regulate ROS.Impressively,MoO_(3)nanocrystals with high density of GBs(MoO_(3)-600)deliver a mass activity of 83 mmol g^(-1)h^(-1)in aerobic oxidation of benzyl alcohol,7 and 8 times as high as that of MoO_(3)nanoparticles without GBs and Pt/C,respectively.In addition,the selectivity of benzoic acid is 100%during whole reaction process over MoO_(3)-600.Mechanistic studies reveal that the oxygen atoms at GBs in MoO_(3)-600 are highly active to form·OH radicals with the generation of oxygen vacancies,while the oxygen vacancies are replenished by O_(2).The reaction path directly contributes to the excellent catalytic performance.
文摘The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.
基金This work was supported by the Wild Goose Array Special Projects(No.2023STYZ002)Heilongjiang Provincial Research Institute Project(Nos.2023SSKY001 and 2022SSKY003).
文摘In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost.The effects of inoculation on physical and chemical parameters,ammonia and hydrogen sulfide release,nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied.The results showed that inoculation of TNB and TSOB increased the temperature,pH,OM degradation,C/N ratio and germination index(GI)of compost.Compared with the control treatment(CK),the addition of inoculants reduced the release of NH_(3) and H_(2)S,and transformed them into nitrogen and sulfur compounds,the hydrolysis of polymeric ferrous sulfate was promoted,resulting in relatively high content of sulfite and sulfate.At the same time,the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.
基金This work was supported by the National Natural Science Foundation of China(Nos.21976147,11875258,and 51801235)Natural Science Foundation of Hunan Province(Nos.2018RS3019 and 2019JJ30033)+1 种基金Sichuan Science and Technology Program(Nos.2020JDJQ0060 and 2020YFG0160)Innovation-Driven Project of Central South University(No.2018CX004),the Start-up Funding of Central South University(No.502045005)。
文摘Photocatalytic aerobic oxidation by using oxygen molecules(O_(2))as green and low-cost oxidants is of great attraction,where the introduction of irradiation has been proved as an efficient strategy to lower reaction temperature as well as promote catalytic performance.Moreover,the oxygen vacancies(OVs)of catalyst are highly active sites to adsorb and activate O_(2)during photocatalytic aerobic oxidation.However,OVs are easily blocked by oxygen atoms from active oxygen species during the catalytic process,leading to the deactivation of catalysis.Herein,a promising catalyst toward photocatalytic aerobic oxidation was successfully developed by recovering the OVs through doping Au atoms into Ti_(3)C_(2)T_(x)MXene(Au/Ti_(3)C_(2)T_(x)).Impressively,Au/Ti_(3)C_(2)T_(x)exhibited remarkable activity under full-spectrum irradiation towards photooxidation of methyl phenyl sulfide(MPS)and methylene blue(MB),attaining a conversion of>90%at room temperature.Moreover,Au/Ti_(3)C_(2)T_(x)also manifested remarkable stability by maintaining>95%initial activity after 10 successive reaction rounds.Further mechanistic studies indicated that the OVs of Au/Ti_(3)C_(2)T_(x)served as the active centers to efficiently adsorb and activate O_(2).More importantly,the doped Au atoms of Au/Ti_(3)C_(2)T_(x)were conducive to the recovery of OVs during photocatalytic process from the results of theoretical and experimental aspects.The recovered OVs of Au/Ti_(3)C_(2)T_(x)continuously and efficiently activated O_(2),directly contributing to the remarkable catalytic activity and stability.
基金grants from the Outstanding Youth Project of Jiangxi Province(No.2020ACBL216005)General Program of National Natural Science Foundation of China(Nos.82171366,81960236)+3 种基金Key Project of Jiangxi Provincial Department of Education(No.GJJ190022)Project of Jiangxi Provincial Department of Health Commission(No.20193199)Key Research and Development of Science at Technology Department of Jiangxi Province(Nos.20203BBGL73172,20192BBGL70022)Shanghai Natural Science Foundation(No.19ZR1447400)
文摘To the Editor:Traumatic brain injury(TBI)refers to brain tissue damage caused by trauma.TBI pathogenesis is complicated and the involved molecular targets are also not clear.Astrocytes proliferate and hypertrophy after brain injury.They have strong tolerance to hypoxia and ischemia to protect neurons in the acute phase of brain injury.
基金Key-Area Research and Development Program of Guangdong Province(2019B010934001)National Key Research and Development Program of China(2016YFA0202703)+1 种基金National Natural Science Foundation of China(51432005,51603013,61574018)Youth Innovation Promotion Association of CAS(2017055)。
文摘The electronic paper(E-paper)displays features such as flexibility,sunlight visibility,and low power consumption,which makes it ideal for Internet of Things(IoT)applications where the goal is to eliminate bulky power modules.Here,we report a unique self-powered E-paper(SPEP),where information inputs and energy supplies are all converted from mechanical motion by a triboelectric nanogenerator(TENG).The operation of an electrophoretic E-paper is first investigated,identifying the current density as a determinative parameter for driving pigment particle motion and color change.Electrical and optical responses of the E-paper driven by a slidingmode TENG are then found to be consistent with that under a current source mode.All-in-one monochromic and chromatic SPEPs integrated with a flexible transparent TENG are finally demonstrated,and a pixelated SPEP is discussed for future research.The sliding-driven mechanism of SPEP allows for a potential handwriting function,is free of an extra power supply,and promises undoubtedly a wide range of future applications.
基金Acknowledgements The authors were deeply grateful to the anonymous referees for the careful reading, valuable comments, and correcting some errors, which have greatly improved the quality of the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11371029).
文摘We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in the Hilbert space. We prove the existence and uniqueness of the integral solution for this kind of equations with the coefficients satisfying some non-Lipschitz conditions. The results are obtained by using the method of successive approximation.
基金This work was supported by HKSAR,the Research Grants Council Early Career Scheme(Grant No.24206919)the Guangdong Basic and Applied Basic Research Foundation(Project No.2020A1515111161)This work was supported in part by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083).
文摘Triboelectric nanogenerators(TENGs)represent a promising next‐generation renewable energy technology.TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight,broad range of material choices,low cost,and no pollution.However,issues such as input force irregularity,working bandwidth,efficiency calculation,and dynamic modeling hinder the use of TENGs in industrial or practical applications.In this paper,the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow.In addition,this paper reviews the main contributions made in recent years to achieve optimized output based on springs,magnetic forces,and pendulums,and introduces different ways to increase the bandwidth of TENGs.Finally,the main problems of TENGs in the process of harvesting vibration energy are discussed.This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.
基金HKSAR Research Grants Council,Grant/Award Numbers:16305320,C6014-20W,16307020,14200120National Natural Science Foundation of China,Grant/Award Numbers:21788102,52275560+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar,Grant/Award Number:2023B1515020074Innovation and Technology Commission,Grant/Award Number:ITCCNERC14SC01the start-up fund of Hong Kong University of Science and Technology(Guangzhou),Grant/Award Number:G0101000092the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone,Grant/Award Number:HZQB-KCZYB-2020083。
文摘Visible light-based human–machine interactive media is capable of transmitting electrical readouts to machines and providing intuitive feedback to users simultaneously.Currently,many inorganic mechanoluminescent(ML)materials-based interactive media,typically ZnS-loaded phosphors(ZLPs),have been successfully demonstrated.However,organic ML materials-based solutions were rarely exploited despite their huge merits of strong structural modification,abundant luminescence property,low cost,easy preparation,and so on.Here,we propose a novel interactive tactile display(ITD)based on organic ML materials(Cz-A6-dye)and triboelectric nanogenerator,with ultra-brightness(130%enhancement)and ultra-low threshold pressure(57%reduction)as compared to ZLPs.The proposed ITD achieves the conversion of weak mechanical stimuli into visible light and electrical signals simultaneously,without extra power supplies.Furthermore,the relationship between the luminous performance of organic ML materials and mechanical force is quantified,benefiting from the uniform ML layer prepared.Enabled by convolutional neural networks,the high-accuracy recognition(97.1%)for handwriting and identity of users is realized at the same time.Thus,the ITD has great potential for intelligent wearable electronics and classified military applications.