Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“mi...The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“micro ideological and political education”in colleges and universities under the development of all-media integration,this study summarizes the main practices,achievements,and problems of“micro ideological and political education”in colleges and universities,and proposes to optimize and improve the work of“micro ideological and political education”from the perspectives of platform construction,work creation,team building,and guarantee mechanism.Optimization and enhancement are needed to effectively improve the relevance and effectiveness of“micro ideological and political education”work.展开更多
Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This st...Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.展开更多
It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched lay...It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.展开更多
In this study,we developed a novel on-line solid phase extraction(SPE)-ultra-high-performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS)-based analytical method for simultaneously quantifying 12 illic...In this study,we developed a novel on-line solid phase extraction(SPE)-ultra-high-performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS)-based analytical method for simultaneously quantifying 12 illicit drugs and metabolites(methamphetamine,amphetamine,morphine,codeine,6-monoacetylmorphine,benzoylecgonine,3,4-methylenedioxymethamphetamine,3,4-methylenedioxyamphetamine,cocaine,ketamine,norketamine,and methcathinone)and cotinine(COT)in wastewater samples.The analysis was performed by loading 2 m L of the sample onto an Oasis hydrophilic-lipophilic balance cartridge and using a cleanup step(5%methanol)to eliminate interference with a total run time of 13 min.The isotope-labeled internal standard method was used to quantify the target substances and correct for unavoidable losses and matrix effects during the on-line SPE process.Typical analytical characteristics used for method validation were sensitivity,linearity,precision,repeatability,recovery,and matrix effects.The limit of detection(LOD)and limit of quantification(LOQ)of each target were set at 0.20 ng/L and 0.50 ng/L,respectively.The linearity was between 0.5 ng/L and250 ng/L,except for that of COT.The intra-and inter-day precisions were<10.45%and 25.64%,respectively,and the relative recovery ranged from 83.74%to 162.26%.The method was used to analyze various wastewater samples from 33 cities in China,and the results were compared with the experimental results of identical samples analyzed using off-line SPE.The difference rate was between 19.91%and-20.44%,and the error range could be considered acceptable.These findings showed that on-line SPE is a suitable alternative to off-line SPE for the analysis of illicit drugs in samples.展开更多
Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during out...Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during outbursts,coal samples with different initial particle sizes were evaluated using a coal and gas outburst testing device.Three basic particle sizes,5–10 mesh,10–40 mesh,and 40–80 mesh,as well as some mixed particle size coal samples were used in tests.The coal particles were pre-compacted at a pressure of 4 MPa before the tests.The vertical ground stress(4 MPa)and the horizontal ground stress(2.4 MPa)were initially simulated by the hydraulic system and maintained throughout.During the tests,the samples were first placed in a vacuum for 3 h,and the coal was filled with gas(CH4)for an adsorption time of approximately 5 h.Finally,the gas valve was shut off and the coal and gas outburst was induced by quickly opening the outburst hole.The coal particles that were thrown out by the outburst test device were collected and screened based on the particle size.The results show the following.(1)Smaller particle sizes have a worse crushing effect than larger sizes.Furthermore,the well-graded coal particles are weakly broken during the outburst process.(2)As the number of repeated tests increases,the relative breakage index grows;however,the increment of growth decreases after each test,showing that further fragmentation becomes increasingly difficult.展开更多
It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal...It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal wetlands. To solve this problem, this study tried to design an optimal, efficient and practical sampling strategy by comprehensively focusing on the three main parts of the entire process(to optimize the sampling method, to determine the minimum sampling effort and to explore the proper sampling interval) in a typical intertidal wetland of the Changjiang(Yangtze) Estuary, China. Transect sampling was selected and optimized by stratification based on pronounced habitat types(tidal flat, tidal creek, salt marsh vegetation). This type of sampling is also termed within-transect stratification sampling. The optimal sampling intervals and the minimum sample effort were determined by two beneficial numerical methods: Monte Carlo simulations and accumulative species curves. The results show that the within-transect stratification sampling with typical habitat types was effective for encompassing 81% of the species, suggesting that this type of sampling design can largely reduce the sampling effort and labor. The optimal sampling intervals and minimum sampling efforts for three habitats were determined: sampling effort must exceed 1.8 m^2 by 10 m intervals in the salt marsh vegetation, 2 m^2 by 10 m intervals in the tidal flat, and 3 m^2 by 1 m intervals in the tidal creek habitat. It was suggested that the differences were influenced by the mobility range of the dominant species and the habitats' physical differences(e.g., tidal water, substrate, vegetation cover). The optimized sampling strategy could provide good precision in the richness estimation of macrobenthos and balance the sampling effort. Moreover, the conclusions presented here provide a reference for recommendations to consider before macrobenthic surveys take place in estuarine wetlands. The sampling strategy, focusing on the three key parts of the sampling design, had a good operational effect and could be used as a guide for field sampling for habitat management or ecosystem assessment.展开更多
Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite s...Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.展开更多
弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphpma,DLBCL)是非霍奇金淋巴瘤中最常见的类型,在分子遗传学、免疫表型等方面具有高度异质性,患者临床预后也截然不同。R-CHOP方案为DLBCL标准治疗方案,如何进一步提高DLBCL疗效是近年来...弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphpma,DLBCL)是非霍奇金淋巴瘤中最常见的类型,在分子遗传学、免疫表型等方面具有高度异质性,患者临床预后也截然不同。R-CHOP方案为DLBCL标准治疗方案,如何进一步提高DLBCL疗效是近年来的研究热点。2015年美国临床肿瘤学会(ASCO)提出基于细胞起源分型进行R-CHOP+X方案治疗的策略,但这些方案相继失败。基于更加精准的分层方法,筛选出不同DLBCL亚组并进行针对性治疗,是未来DLBCL治疗的方向。此外,抗体-药物偶联物、双特异性抗体和嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)等免疫治疗近年来取得突破性进展,为DLBCL患者带来新的希望。本文针对基于精准分层的DLBCL靶向治疗、免疫治疗的最新进展及遗传学检测方法予以综述。展开更多
The ultrasonic technique has been demonstrated to be a promising method for the disposal of hazardous oily sludge.However,the separation of oil from the surfaces of the solid particles is still difficult due to the st...The ultrasonic technique has been demonstrated to be a promising method for the disposal of hazardous oily sludge.However,the separation of oil from the surfaces of the solid particles is still difficult due to the strong interaction between the oil and solid particle.In this study,three types of surfactants were used to assist the ultrasonic treatment of oily sludge.The oil component,surface composition,and structure of the solid particle were determined.The results showed that different surfactants had different oil removal abilities.In the three surfactant-assisted sonication systems,the oil removal rate increased during the starting reaction period and then decreased with longer sonication time.The results of four components analysis suggested that surfactant easy to be ionized in water posed a better removal effect on resins,while the amphiphilic surfactant preferred saturates,aromatics and asphaltenes.The morphology analysis indicated that particle size was shattered into smaller ones by the ultrasonic process,and the wettability of the solid surface also changed during this treatment.The characterization of the oil component and solid particle during surfactant-assisted ultrasonication treatment will help to better understand the separation of oil from oily sludge and improve the oil recovery efficiency from oily sludge.展开更多
Interfacial structure greatly affects the mechanical properties of laminated plates.However,the critical material properties that impact the interfacial morphology,appearance,and associated bonding mechanism of explos...Interfacial structure greatly affects the mechanical properties of laminated plates.However,the critical material properties that impact the interfacial morphology,appearance,and associated bonding mechanism of explosive welded plates are still unknown.In this paper,the same base plate(AZ31B alloy)and different flyer metals(aluminum alloy,copper,and stainless steel)were used to investigate interfacial morphology and structure.SEM and TEM results showed that typical sine wave,wave-like,and half-wave-like interfaces were found at the bonding interfaces of Al/Mg,Cu/Mg and SS/Mg clad plates,respectively.The different interfacial morphologies were mainly due to the differences in hardness and yield strength between the flyer and base metals.The results of the microstructural distribution at the bonding interface indicated metallurgical bonding,instead of the commonly believed solid-state bonding,in the explosive welded clad plate.In addition,the shear strength of the bonding interface of the explosive welded Al/Mg,Cu/Mg and SS/Mg clad plates can reach up to 201.2 MPa,147.8 MPa,and 128.4 MPa,respectively.The proposed research provides the design basis for laminated composite metal plates fabrication by explosive welding technology.展开更多
Sluggish charge transfer in perovskite film induced by inherent defects such as uncoordinated Pb2+undoubtedly hinders the rapid response of self-powered photovoltaic-typed detector.Based on interaction between Lewis a...Sluggish charge transfer in perovskite film induced by inherent defects such as uncoordinated Pb2+undoubtedly hinders the rapid response of self-powered photovoltaic-typed detector.Based on interaction between Lewis acids and bases,herein,we employ thiourea molecule as a multifunctional Lewis base to significantly improve the quality of all-inorganic CsPbIBr2 perovskite film.After careful characterizations,the quality of perovskite film has been well regulated.Arising from the reduced defect and the reinforced the interfacial charge extraction owing to the strong interaction between uncoordinated Pb2+ions and the-C=S groups in thiourea and the formation of hydrogen bond at perovskite/TiO_(2) interface,an enhanced responsivity of 0.335 A W-1 and specific detectivity of 3.92×10^(12) Jones has been achieved for the self-powered,carbon-electrode based photodetector,which is comparable to the state-of-theart device based on CsPbIBr2 film.More importantly,the device free of encapsulation remains 82.8%of initial performance after storage over 56 days in ambient atmosphere,promoting the practical deployment of perovskite products.展开更多
In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction fr...In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.展开更多
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金Jiangsu Provincial Philosophy and Social Science Research on Ideology and Politics Special Topic“Research on the Application of‘Micro Ideological and Political Education’in Ideological and Political Education of Colleges and Universities under the Ecology of All Media”(2019SJB674)2022 Special Project of Jiangsu Higher Education Society’s Counselor Work Research Committee“Research on the Integration of the Great Founding Spirit of the Party into the Values Education of College Students in the New Era”(22FYHLX063)。
文摘The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“micro ideological and political education”in colleges and universities under the development of all-media integration,this study summarizes the main practices,achievements,and problems of“micro ideological and political education”in colleges and universities,and proposes to optimize and improve the work of“micro ideological and political education”from the perspectives of platform construction,work creation,team building,and guarantee mechanism.Optimization and enhancement are needed to effectively improve the relevance and effectiveness of“micro ideological and political education”work.
文摘Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.
文摘It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.
基金supported by the National Key Research and Development Program of China(Grant No.:2018YFC0807402)the National Natural Science Foundation of China(Grant No.:82073810)。
文摘In this study,we developed a novel on-line solid phase extraction(SPE)-ultra-high-performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS)-based analytical method for simultaneously quantifying 12 illicit drugs and metabolites(methamphetamine,amphetamine,morphine,codeine,6-monoacetylmorphine,benzoylecgonine,3,4-methylenedioxymethamphetamine,3,4-methylenedioxyamphetamine,cocaine,ketamine,norketamine,and methcathinone)and cotinine(COT)in wastewater samples.The analysis was performed by loading 2 m L of the sample onto an Oasis hydrophilic-lipophilic balance cartridge and using a cleanup step(5%methanol)to eliminate interference with a total run time of 13 min.The isotope-labeled internal standard method was used to quantify the target substances and correct for unavoidable losses and matrix effects during the on-line SPE process.Typical analytical characteristics used for method validation were sensitivity,linearity,precision,repeatability,recovery,and matrix effects.The limit of detection(LOD)and limit of quantification(LOQ)of each target were set at 0.20 ng/L and 0.50 ng/L,respectively.The linearity was between 0.5 ng/L and250 ng/L,except for that of COT.The intra-and inter-day precisions were<10.45%and 25.64%,respectively,and the relative recovery ranged from 83.74%to 162.26%.The method was used to analyze various wastewater samples from 33 cities in China,and the results were compared with the experimental results of identical samples analyzed using off-line SPE.The difference rate was between 19.91%and-20.44%,and the error range could be considered acceptable.These findings showed that on-line SPE is a suitable alternative to off-line SPE for the analysis of illicit drugs in samples.
基金This research was financially supported by the National Natural Science Foundation of China(No.51434003)the Project of the Ministry of Emergency Management of the People's Republic of China(sichuan-0011-2018AQ)the Department of Science and Technology of Sichuan Province(19YYJC2854).
文摘Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during outbursts,coal samples with different initial particle sizes were evaluated using a coal and gas outburst testing device.Three basic particle sizes,5–10 mesh,10–40 mesh,and 40–80 mesh,as well as some mixed particle size coal samples were used in tests.The coal particles were pre-compacted at a pressure of 4 MPa before the tests.The vertical ground stress(4 MPa)and the horizontal ground stress(2.4 MPa)were initially simulated by the hydraulic system and maintained throughout.During the tests,the samples were first placed in a vacuum for 3 h,and the coal was filled with gas(CH4)for an adsorption time of approximately 5 h.Finally,the gas valve was shut off and the coal and gas outburst was induced by quickly opening the outburst hole.The coal particles that were thrown out by the outburst test device were collected and screened based on the particle size.The results show the following.(1)Smaller particle sizes have a worse crushing effect than larger sizes.Furthermore,the well-graded coal particles are weakly broken during the outburst process.(2)As the number of repeated tests increases,the relative breakage index grows;however,the increment of growth decreases after each test,showing that further fragmentation becomes increasingly difficult.
基金The Special Scientific Research Funds for Central Non-profit Institutes(East China Sea Fisheries Research Institute)under contract No.2016T08the National Natural Science Foundation of China under contract No.31400410
文摘It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal wetlands. To solve this problem, this study tried to design an optimal, efficient and practical sampling strategy by comprehensively focusing on the three main parts of the entire process(to optimize the sampling method, to determine the minimum sampling effort and to explore the proper sampling interval) in a typical intertidal wetland of the Changjiang(Yangtze) Estuary, China. Transect sampling was selected and optimized by stratification based on pronounced habitat types(tidal flat, tidal creek, salt marsh vegetation). This type of sampling is also termed within-transect stratification sampling. The optimal sampling intervals and the minimum sample effort were determined by two beneficial numerical methods: Monte Carlo simulations and accumulative species curves. The results show that the within-transect stratification sampling with typical habitat types was effective for encompassing 81% of the species, suggesting that this type of sampling design can largely reduce the sampling effort and labor. The optimal sampling intervals and minimum sampling efforts for three habitats were determined: sampling effort must exceed 1.8 m^2 by 10 m intervals in the salt marsh vegetation, 2 m^2 by 10 m intervals in the tidal flat, and 3 m^2 by 1 m intervals in the tidal creek habitat. It was suggested that the differences were influenced by the mobility range of the dominant species and the habitats' physical differences(e.g., tidal water, substrate, vegetation cover). The optimized sampling strategy could provide good precision in the richness estimation of macrobenthos and balance the sampling effort. Moreover, the conclusions presented here provide a reference for recommendations to consider before macrobenthic surveys take place in estuarine wetlands. The sampling strategy, focusing on the three key parts of the sampling design, had a good operational effect and could be used as a guide for field sampling for habitat management or ecosystem assessment.
基金financially supported by the National Natural Science Foundation of China(32201969)Natural Science Foundation of Henan Province(212300410297)+3 种基金Basic Research Plan of Higher Education School Key Scientific Research Project of Henan Province(21A550014)Doctoral Research Foundation of Zhengzhou University of Light Industry(2020BSJJ015)Program for Science and Technology Innovation Talents in Universities of Henan Province(20HASTIT037)Youth Talents Project of Henan Province(2020HYTP046).
文摘Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.
基金financial support from the National Natural Science Foundation of China(Nos.41977142 and 41807133)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.18K05ESPCT)。
文摘The ultrasonic technique has been demonstrated to be a promising method for the disposal of hazardous oily sludge.However,the separation of oil from the surfaces of the solid particles is still difficult due to the strong interaction between the oil and solid particle.In this study,three types of surfactants were used to assist the ultrasonic treatment of oily sludge.The oil component,surface composition,and structure of the solid particle were determined.The results showed that different surfactants had different oil removal abilities.In the three surfactant-assisted sonication systems,the oil removal rate increased during the starting reaction period and then decreased with longer sonication time.The results of four components analysis suggested that surfactant easy to be ionized in water posed a better removal effect on resins,while the amphiphilic surfactant preferred saturates,aromatics and asphaltenes.The morphology analysis indicated that particle size was shattered into smaller ones by the ultrasonic process,and the wettability of the solid surface also changed during this treatment.The characterization of the oil component and solid particle during surfactant-assisted ultrasonication treatment will help to better understand the separation of oil from oily sludge and improve the oil recovery efficiency from oily sludge.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805359,51904206,51375328)Major program of national natural science foundation of China(U1710254),China Postdoctoral Science Foundation(Grant No.2018M631772)+2 种基金Shanxi Provincial Natural Science Foundation of China(Grant No.201901D211015)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(STIP)(Grant No.2019L0333)Central Special Fund for Guiding Local Science and Technology Development(YDZX20191400002149).
文摘Interfacial structure greatly affects the mechanical properties of laminated plates.However,the critical material properties that impact the interfacial morphology,appearance,and associated bonding mechanism of explosive welded plates are still unknown.In this paper,the same base plate(AZ31B alloy)and different flyer metals(aluminum alloy,copper,and stainless steel)were used to investigate interfacial morphology and structure.SEM and TEM results showed that typical sine wave,wave-like,and half-wave-like interfaces were found at the bonding interfaces of Al/Mg,Cu/Mg and SS/Mg clad plates,respectively.The different interfacial morphologies were mainly due to the differences in hardness and yield strength between the flyer and base metals.The results of the microstructural distribution at the bonding interface indicated metallurgical bonding,instead of the commonly believed solid-state bonding,in the explosive welded clad plate.In addition,the shear strength of the bonding interface of the explosive welded Al/Mg,Cu/Mg and SS/Mg clad plates can reach up to 201.2 MPa,147.8 MPa,and 128.4 MPa,respectively.The proposed research provides the design basis for laminated composite metal plates fabrication by explosive welding technology.
基金supported by the National Natural Science Foundation of China(61774139,62004083,and U1802257)the Postdoctoral Research Foundation of China(2020 M683185 and 2019 M663379)+1 种基金the Fundamental Research Funds for the Central Universities(21620348,21618409 and 21619311)the Natural Science Foundation of Guangdong Province(2019B151502061,2020A1515011123)。
文摘Sluggish charge transfer in perovskite film induced by inherent defects such as uncoordinated Pb2+undoubtedly hinders the rapid response of self-powered photovoltaic-typed detector.Based on interaction between Lewis acids and bases,herein,we employ thiourea molecule as a multifunctional Lewis base to significantly improve the quality of all-inorganic CsPbIBr2 perovskite film.After careful characterizations,the quality of perovskite film has been well regulated.Arising from the reduced defect and the reinforced the interfacial charge extraction owing to the strong interaction between uncoordinated Pb2+ions and the-C=S groups in thiourea and the formation of hydrogen bond at perovskite/TiO_(2) interface,an enhanced responsivity of 0.335 A W-1 and specific detectivity of 3.92×10^(12) Jones has been achieved for the self-powered,carbon-electrode based photodetector,which is comparable to the state-of-theart device based on CsPbIBr2 film.More importantly,the device free of encapsulation remains 82.8%of initial performance after storage over 56 days in ambient atmosphere,promoting the practical deployment of perovskite products.
基金financial support from the National Natural Science Foundation of China(Nos.41807133 and 41977142)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.18K05ESPCT)the Fundamental Research Funds for the Central Universities(PT1915)。
文摘In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.