As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramic...As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.展开更多
Due to the miniaturization of modern devices re-quire components with light weight,high integra-tion and the ability to store energy in as small vol-ume as possible.As a result,energy storage densitybecomes an importa...Due to the miniaturization of modern devices re-quire components with light weight,high integra-tion and the ability to store energy in as small vol-ume as possible.As a result,energy storage densitybecomes an important figure of merit for energy stor-age devices.In this paper,firstly,we discussedthe energy density in fine-grained lead zirconate tita-nate glass-ceramics composite with the help of展开更多
Alternating current poling(ACP)in air by changing poling temperature(70e130℃)and voltages(2e6 kVrms/cm)on pseudo-ternary 0.24 Pb(In_(1/2)Nb_(1/2))O_(3)-0.46 Pb(Mg1/3Nb_(2/3))O3-0.30PbTiO_(3)(PIMN-0.30PT)single crysta...Alternating current poling(ACP)in air by changing poling temperature(70e130℃)and voltages(2e6 kVrms/cm)on pseudo-ternary 0.24 Pb(In_(1/2)Nb_(1/2))O_(3)-0.46 Pb(Mg1/3Nb_(2/3))O3-0.30PbTiO_(3)(PIMN-0.30PT)single crystals(SCs)manufactured by continuous-feeding Bridgman(CF BM)method was investigated.Free dielectric permittivity(εT 33/ε0)and piezoelectric constant(d33)were improved to be 7000 and 2340 pC/N,which were 29%higher than those of direct current poling(DCP)at 90℃ with 4 kV/cm(εT 33/ε0=5440,d_(33)=1810 pC/N).However,phase change temperature(Tpc)decreased from 94℃ to 78℃ as opposite results reported by other groups.We demonstrated that the high temperature(HT)ACP improved piezoelectric performance of CF BM SCs,however,the Tpc were different from other crystal growth method.The well-designed ACP process was a promising method for mass production not only to enhance the electrical properties for the pseudo-ternary SCs but also reduce the risk of breakdown and realizes organic solvent-free poling process.展开更多
The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs p...The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs poled at high voltage(HV,5 kV_(rms)/cm)occasionally showed large fluctuations and low opposite values of piezoelectric coefficient(d_(33)=±1370 pC/N)in one plate.This revealed spuriousmode vibrations(SMV)of impedance spectrum.However,after depolarizing and repolarizing the sample with a sine-wave ACP at low voltage(LV,3.5 kV_(rms)/cm),the d_(33) enhanced to be 1720 pC/N(+26%)and did not exhibit large fluctuation or opposite values in one plate any more.The impedance spectrum became clean and the abnormal SMV disappeared.We proposed four possible mechanisms of the SMV,and speculate that the main cause maybe by macro-scale sub-domain structure and/or phase change in the main domain structure and/or phase in the SC plate due to the specific poling conditions not eternal mechanical damage of PMN-PT SCs.This study will be useful to realize a high d_(33) and improve other properties of PMN-PT ACP SC ultrasonic transducers without any SMV for high-frequency medical imaging equipment.展开更多
A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synt...A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synthesized by a conventional solid-state reaction method,and their crystal structures as well as their MPB were determined from X-ray diffraction patterns measured from room temperature to 300℃.The vertical MPB composition was determined to be 0.9025(K_(0:45)Na0:5Li_(0:05))NbO_(3)–0.09BaZrO_(3)–0.0075(La,Na)TiO_(3)and the Curie temperature was found to be about 195℃.It was successfully confirmed that ceramic samples of this system could be sintered in a reducing atmosphere.For lead-free piezoceramic applications of multilayer actuators using Ni inner electrodes,the results obtained in this work have important practical implications.展开更多
After field cooling(FC)alternating current poling(ACP),we investigated the dielectric and piezoelectric properties of[001]_(pc)-oriented 0.24Pb(In_(1/2)Nb_(1/2))O_(3)(PIN)-0.46Pb(Mg_(1/3)Nb_(2/3))O_(3)(PMN)-0.30PbTiO3...After field cooling(FC)alternating current poling(ACP),we investigated the dielectric and piezoelectric properties of[001]_(pc)-oriented 0.24Pb(In_(1/2)Nb_(1/2))O_(3)(PIN)-0.46Pb(Mg_(1/3)Nb_(2/3))O_(3)(PMN)-0.30PbTiO3(PT)(PIMN-0.30PT)single crystals(SCs),which were manufactured by continuous-feeding Bridgman(CF BM)within morphotropic phase boundary(MPB)region.By ACP with 4 kVrms/cm from 100 to 70℃,the PIMN-0.30PT SC attained high dielectric permittivity of 8330,piezoelectric coefficient(d_(33))of 2750 pC/N,bar mode electromechanical coupling factorκ_(33)of 0.96 with higher phase change temperature(T_(pc))of 103℃,and high Curie temperature(7c)of 180℃.These values are the highest ever reported as PIMN-xPT SC system with Tpc>100℃.The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis.This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT,and provides a route to a wide range of piezoelectric device applications.展开更多
Lead-free piezoelectric thin films of 0.055BaZrO_(3)–0.935(K_(0.45)Na_(0.5)Li_(0.05))NbO_(3)–0.01(Bi_(0.5)Na_(0.5))TiO_(3)(BZ–KNLN–BNT)were fabricated on(100)-LaNiO_(3)/SiO_(2)/Si substrates.The Pechini(polymeric ...Lead-free piezoelectric thin films of 0.055BaZrO_(3)–0.935(K_(0.45)Na_(0.5)Li_(0.05))NbO_(3)–0.01(Bi_(0.5)Na_(0.5))TiO_(3)(BZ–KNLN–BNT)were fabricated on(100)-LaNiO_(3)/SiO_(2)/Si substrates.The Pechini(polymeric precursor)method was carried out to prepare the complicated multi-component precursor solution.This method was suited for controlling the complex components accurately.The films crystallized at 700℃ showed a(100)pc-oriented perovskite structure,whose grain size was about 200 nm and thickness was about 700 nm.The Curie temperature Tc of the films was 292℃ that was near to that of the bulk ceramics.The preparation method used in this work provided a possibility for the application of multi-component lead-free piezoelectric films.展开更多
基金This work was financially supported by the Scientific Research Fund-ing Project of the Educational Department of Liaoning Province in 2020,grant number LQ2020008.
文摘As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.
文摘Due to the miniaturization of modern devices re-quire components with light weight,high integra-tion and the ability to store energy in as small vol-ume as possible.As a result,energy storage densitybecomes an important figure of merit for energy stor-age devices.In this paper,firstly,we discussedthe energy density in fine-grained lead zirconate tita-nate glass-ceramics composite with the help of
文摘Alternating current poling(ACP)in air by changing poling temperature(70e130℃)and voltages(2e6 kVrms/cm)on pseudo-ternary 0.24 Pb(In_(1/2)Nb_(1/2))O_(3)-0.46 Pb(Mg1/3Nb_(2/3))O3-0.30PbTiO_(3)(PIMN-0.30PT)single crystals(SCs)manufactured by continuous-feeding Bridgman(CF BM)method was investigated.Free dielectric permittivity(εT 33/ε0)and piezoelectric constant(d33)were improved to be 7000 and 2340 pC/N,which were 29%higher than those of direct current poling(DCP)at 90℃ with 4 kV/cm(εT 33/ε0=5440,d_(33)=1810 pC/N).However,phase change temperature(Tpc)decreased from 94℃ to 78℃ as opposite results reported by other groups.We demonstrated that the high temperature(HT)ACP improved piezoelectric performance of CF BM SCs,however,the Tpc were different from other crystal growth method.The well-designed ACP process was a promising method for mass production not only to enhance the electrical properties for the pseudo-ternary SCs but also reduce the risk of breakdown and realizes organic solvent-free poling process.
文摘The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs poled at high voltage(HV,5 kV_(rms)/cm)occasionally showed large fluctuations and low opposite values of piezoelectric coefficient(d_(33)=±1370 pC/N)in one plate.This revealed spuriousmode vibrations(SMV)of impedance spectrum.However,after depolarizing and repolarizing the sample with a sine-wave ACP at low voltage(LV,3.5 kV_(rms)/cm),the d_(33) enhanced to be 1720 pC/N(+26%)and did not exhibit large fluctuation or opposite values in one plate any more.The impedance spectrum became clean and the abnormal SMV disappeared.We proposed four possible mechanisms of the SMV,and speculate that the main cause maybe by macro-scale sub-domain structure and/or phase change in the main domain structure and/or phase in the SC plate due to the specific poling conditions not eternal mechanical damage of PMN-PT SCs.This study will be useful to realize a high d_(33) and improve other properties of PMN-PT ACP SC ultrasonic transducers without any SMV for high-frequency medical imaging equipment.
文摘A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synthesized by a conventional solid-state reaction method,and their crystal structures as well as their MPB were determined from X-ray diffraction patterns measured from room temperature to 300℃.The vertical MPB composition was determined to be 0.9025(K_(0:45)Na0:5Li_(0:05))NbO_(3)–0.09BaZrO_(3)–0.0075(La,Na)TiO_(3)and the Curie temperature was found to be about 195℃.It was successfully confirmed that ceramic samples of this system could be sintered in a reducing atmosphere.For lead-free piezoceramic applications of multilayer actuators using Ni inner electrodes,the results obtained in this work have important practical implications.
基金supported by the Murata Science Foundation Japan(H31JOJI022).
文摘After field cooling(FC)alternating current poling(ACP),we investigated the dielectric and piezoelectric properties of[001]_(pc)-oriented 0.24Pb(In_(1/2)Nb_(1/2))O_(3)(PIN)-0.46Pb(Mg_(1/3)Nb_(2/3))O_(3)(PMN)-0.30PbTiO3(PT)(PIMN-0.30PT)single crystals(SCs),which were manufactured by continuous-feeding Bridgman(CF BM)within morphotropic phase boundary(MPB)region.By ACP with 4 kVrms/cm from 100 to 70℃,the PIMN-0.30PT SC attained high dielectric permittivity of 8330,piezoelectric coefficient(d_(33))of 2750 pC/N,bar mode electromechanical coupling factorκ_(33)of 0.96 with higher phase change temperature(T_(pc))of 103℃,and high Curie temperature(7c)of 180℃.These values are the highest ever reported as PIMN-xPT SC system with Tpc>100℃.The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis.This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT,and provides a route to a wide range of piezoelectric device applications.
基金This work was partially supported by a research grant fromAme Hisaharu Foundation,Toyama,Japan.
文摘Lead-free piezoelectric thin films of 0.055BaZrO_(3)–0.935(K_(0.45)Na_(0.5)Li_(0.05))NbO_(3)–0.01(Bi_(0.5)Na_(0.5))TiO_(3)(BZ–KNLN–BNT)were fabricated on(100)-LaNiO_(3)/SiO_(2)/Si substrates.The Pechini(polymeric precursor)method was carried out to prepare the complicated multi-component precursor solution.This method was suited for controlling the complex components accurately.The films crystallized at 700℃ showed a(100)pc-oriented perovskite structure,whose grain size was about 200 nm and thickness was about 700 nm.The Curie temperature Tc of the films was 292℃ that was near to that of the bulk ceramics.The preparation method used in this work provided a possibility for the application of multi-component lead-free piezoelectric films.