Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri...Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.展开更多
Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers ...Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.展开更多
基金This paper was financially supported by NSC96-2628-E-366-004-MY2 and NSC96-2628-E-132-001-MY2
文摘Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.
基金Science Council of Taiwan Province under Grant Nos.NSC 96-2628-E-366-004-MY2 and 96-2628-E-132-001-MY2
文摘Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.