Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2...Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.展开更多
Both inflammation and anti-inflammation are involved in the protection of retinal cells.Antagonists of the hypothalamic growth hormone-releasing hormone receptor(GHRHR)have been shown to possess potent anti-inflammato...Both inflammation and anti-inflammation are involved in the protection of retinal cells.Antagonists of the hypothalamic growth hormone-releasing hormone receptor(GHRHR)have been shown to possess potent anti-inflammatory properties in experimental disease models of various organs,some with systemic complications.Such effects are also found in ocular inflammatory and neurologic injury studies.In experimental models of mice and rats,both growth hormone-releasing hormone receptor agonists and antagonists may alleviate death of ocular neural cells under certain experimental conditions.This review explores the properties of growth hormone-releasing hormone receptor agonists and antagonists that lead to its protection against inflammatory responses induced by extrinsic agents or neurologic injures in ocular animal models.展开更多
The prospects of stem cell therapy for retinal ganglion cell (RGC) degeneration in human: RGC degeneration is a common pathologic cause of glaucoma and optic neuropathies, which are the leading cause of irreversibl...The prospects of stem cell therapy for retinal ganglion cell (RGC) degeneration in human: RGC degeneration is a common pathologic cause of glaucoma and optic neuropathies, which are the leading cause of irreversible blindness and visual impairment in developed coun- tries, currently affecting more than 100 million people worldwide.展开更多
Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal surv...Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal survival remain unclear.In the present study,we co-cultured adult Fischer rat retinas with primary peritoneal macrophages or zymosan-treated peritoneal macrophages for 7 days.Immunofluorescence analysis revealed that peritoneal macrophages reduced retinal ganglion cell survival and neurite outgrowth in the retinal explant compared with the control group.The addition of zymosan to peritoneal macrophages attenuated the survival and neurite outgrowth of retinal ganglion cells.Conditioned media from peritoneal macrophages also reduced retinal ganglion cell survival and neurite outgrowth.This result suggests that secretions from peritoneal macrophages mediate the inhibitory effects of these macrophages.In addition,increased inflammationand oxidation-related gene expression may be related to the enhanced retinal ganglion cell degeneration caused by zymosan activation.In summary,this study revealed that primary rat peritoneal macrophages attenuated retinal ganglion cell survival and neurite outgrowth,and that macrophage activation further aggravated retinal ganglion cell degeneration.This study was approved by the Animal Ethics Committee of the Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong,Shantou,Guangdong Province,China,on March 11,2014(approval no.EC20140311(2)-P01).展开更多
Complex circuitry and limited regenerative power make central nervous system(CNS)disorders the most challenging and difficult for functional repair.With elusive disease mechanisms,traditional surgical and medical inte...Complex circuitry and limited regenerative power make central nervous system(CNS)disorders the most challenging and difficult for functional repair.With elusive disease mechanisms,traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases.However,the number of neurons still diminishes in many patients.Recently,stem cell therapy has been proposed as a viable option.Mesenchymal stem cells(MSCs),a widely-studied human adult stem cell population,have been discovered for more than 20 years.MSCs have been found all over the body and can be conveniently obtained from different accessible tissues:bone marrow,blood,and adipose and dental tissue.MSCs have high proliferative and differentiation abilities,providing an inexhaustible source of neurons and glia for cell replacement therapy.Moreover,MSCs also show neuroprotective effects without any genetic modification or reprogramming.In addition,the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation.These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders.Here,we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases.This review article will focus on multiple sclerosis,spinal cord injury,autism,glaucoma,retinitis pigmentosa and age-related macular degeneration.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81570849,81100931the Natural Science Foundation of Guangdong Province of China,Nos.2015A030313446,2020A1515011413(all to LPC).
文摘Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
基金supported by the National Natural Science Foundation of China(81570849 to LPC)Joint Regional Basic Science and Applied Basic Science Research Fund of Guangdong Province(2019 A1515110685 to TKN)+4 种基金Special Fund for Chinese Medicine Development of Guangdong Province(20202089 to TKN)the Natural Science Foundation of Guangdong Province(2020 A1515010415 to LPC)an internal grant from Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong KongGrant for Key Disciplinary Project of Clinical Medicine under the Guangdong High-level University Development Program, ChinaThe Chinese University of Hong Kong Direct Grant(2020.067 to WKC)
文摘Both inflammation and anti-inflammation are involved in the protection of retinal cells.Antagonists of the hypothalamic growth hormone-releasing hormone receptor(GHRHR)have been shown to possess potent anti-inflammatory properties in experimental disease models of various organs,some with systemic complications.Such effects are also found in ocular inflammatory and neurologic injury studies.In experimental models of mice and rats,both growth hormone-releasing hormone receptor agonists and antagonists may alleviate death of ocular neural cells under certain experimental conditions.This review explores the properties of growth hormone-releasing hormone receptor agonists and antagonists that lead to its protection against inflammatory responses induced by extrinsic agents or neurologic injures in ocular animal models.
基金supported in part by the National Natural Science Foundation of China(81570849 and 81470636)Research Fund for the Doctoral Program of Higher Education of China(20114402120007)Natural Science Foundation of Guangdong Province(2015A030313446),China
文摘The prospects of stem cell therapy for retinal ganglion cell (RGC) degeneration in human: RGC degeneration is a common pathologic cause of glaucoma and optic neuropathies, which are the leading cause of irreversible blindness and visual impairment in developed coun- tries, currently affecting more than 100 million people worldwide.
基金supported by the National Natural Science Foundation of China,No.81570849(to LPC)the Natural Science Foundation of Guangdong Province of China,No.2020A1515010415(to LPC)+1 种基金the Special Fund for Chinese Medicine Development of Guangdong Province of China,No.20202089(to TKN)the Grant for Key Disciplinary Project of Clinical Medicine under the Guangdong High-Level University Development Program,No.002-18119101.
文摘Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury.However,the effects and mechanisms of macrophage activation on neuronal survival remain unclear.In the present study,we co-cultured adult Fischer rat retinas with primary peritoneal macrophages or zymosan-treated peritoneal macrophages for 7 days.Immunofluorescence analysis revealed that peritoneal macrophages reduced retinal ganglion cell survival and neurite outgrowth in the retinal explant compared with the control group.The addition of zymosan to peritoneal macrophages attenuated the survival and neurite outgrowth of retinal ganglion cells.Conditioned media from peritoneal macrophages also reduced retinal ganglion cell survival and neurite outgrowth.This result suggests that secretions from peritoneal macrophages mediate the inhibitory effects of these macrophages.In addition,increased inflammationand oxidation-related gene expression may be related to the enhanced retinal ganglion cell degeneration caused by zymosan activation.In summary,this study revealed that primary rat peritoneal macrophages attenuated retinal ganglion cell survival and neurite outgrowth,and that macrophage activation further aggravated retinal ganglion cell degeneration.This study was approved by the Animal Ethics Committee of the Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong,Shantou,Guangdong Province,China,on March 11,2014(approval no.EC20140311(2)-P01).
基金Supported by Veterans Affairs(VA)Merit Review GrantSenior VA Research Career Scientist Award,Miami
文摘Complex circuitry and limited regenerative power make central nervous system(CNS)disorders the most challenging and difficult for functional repair.With elusive disease mechanisms,traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases.However,the number of neurons still diminishes in many patients.Recently,stem cell therapy has been proposed as a viable option.Mesenchymal stem cells(MSCs),a widely-studied human adult stem cell population,have been discovered for more than 20 years.MSCs have been found all over the body and can be conveniently obtained from different accessible tissues:bone marrow,blood,and adipose and dental tissue.MSCs have high proliferative and differentiation abilities,providing an inexhaustible source of neurons and glia for cell replacement therapy.Moreover,MSCs also show neuroprotective effects without any genetic modification or reprogramming.In addition,the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation.These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders.Here,we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases.This review article will focus on multiple sclerosis,spinal cord injury,autism,glaucoma,retinitis pigmentosa and age-related macular degeneration.