Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi...Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.展开更多
Nanofluid offers more opportunities and challenges over the traditional surfactant and polymer solutions during enhanced oil recovery(commonly referred to as tertiary oil recovery)due to its remarkable properties.This...Nanofluid offers more opportunities and challenges over the traditional surfactant and polymer solutions during enhanced oil recovery(commonly referred to as tertiary oil recovery)due to its remarkable properties.This review mainly discusses the preparation methods of amphiphilic nanoparticles due to their higher interface activity than sole hydrophilic or hydrophobic nanoparticles(SHNPs).The nanofluids’stability is reviewed in this work.Moreover,the mechanisms of nanofluids in enhancing oil recovery(N-EOR)in terms of interfacial tension reduction,wettability alteration,foam stabilization,emulsion stabilization,structural disjoining pressure,and depressurization-increasing injection are mainly summarized and reviewed.Also,the synergistic effects of nanofluids and traditional surfactants and polymers are discussed.Finally,nanofluids’challenges and prospects are also outlined.The nanofluids can still be regarded as an outstanding candidate for enhancing oil recovery significantly in the future although there are limitations on their applications from laboratory scale to field scale.展开更多
The development of fractured-vuggy carbonate reservoirs is extremely difficult because of the complex fractured-vuggy structure and strong heterogeneity.Foam flooding is a potential enhanced oil recovery(EOR)technolog...The development of fractured-vuggy carbonate reservoirs is extremely difficult because of the complex fractured-vuggy structure and strong heterogeneity.Foam flooding is a potential enhanced oil recovery(EOR)technology in fractured-vuggy carbonate reservoirs.Based on the similarity criterion,three types of 2D visual physical models of the fractured-vuggy structure were made by laser ablation technique,and a 3D visual physical model of the fractured-vuggy reservoir was made by 3D printing technology.Then the physical analog experiments of foam flooding were carried out in these models.The experimental results show that foam can effectively improve the mobility ratio,control the flow velocity of the fluid in different directions,and sweep complex fracture networks.The effect of foam flooding in fractures can be improved by increasing foam strength and enhancing foam stability.The effect of foam flooding in vugs can be improved by reducing the density of the foam and the interfacial tension between foam and oil.Three types of microscopic residual oil and three types of macroscopic residual oil can be displaced by foam flooding.This study verifies the EOR of foam flooding in the fractured-vuggy reservoir and provides theoretical support for the application of foam flooding in fractured-vuggy reservoirs.展开更多
Plugging agents have been widely used to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,the harsh conditions of fractured-vuggy carbonate reservoirs yield a significant challenge in maintaining a...Plugging agents have been widely used to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,the harsh conditions of fractured-vuggy carbonate reservoirs yield a significant challenge in maintaining a long-term stabilization of plugging agents.In this work,we developed an anti-hightemperature and high-salinity polymer gel(APG)with excellent resistance to high temperature(140℃)and ultra-high salinity(240000 mg/L).The rheology and microstructure of APG were characterized before and after gelation.Core plugging tests on fractured cubic cores were conducted to quantify the plugging performance of the gel system.Experimental results showed that the Sclerglucan and Cobalt(Ⅱ)Chloride Hexahydrate filled the three-dimensional(3-D)network with various morphologies,providing extra protection to the cross-linking points of the 3D network structure of APG and thus,leading to a prolongation of the dehydration time.The dehydration rate of APG was only 5%within 30days,and the strength of APG could be maintained at a rigid or near-rigid level over 150 days.Moreover,APG exhibited satisfactory shear and scour resistance.Core plugging tests showed that APG could achieve a plugging rate of 90%and demonstrate ignorable minor damage to the substrate.Our results indicate that APG can serve as a great candidate in channel plugging in fractured-vuggy carbonate reservoirs where fractures are fully developed.展开更多
Age hardening is often used to optimize the mechanical properties of as-deformed Mg-based materials in industry,whereas the improvement of strength is usually accompanied by the significant loss of ductility,which hin...Age hardening is often used to optimize the mechanical properties of as-deformed Mg-based materials in industry,whereas the improvement of strength is usually accompanied by the significant loss of ductility,which hinders the application of Mg-based materials in structural components.In the present work,high strength-ductility synergy(the yield strength of 263±9 MPa,ultimate tensile strength of 398±7 MPa and elongation to fracture of 34%±1%)was realized in as-extruded AlN/AZ91 composites after optimiz-ing aging processes.Microstructural characterization shows that AlN particles induced a large number of geometrically necessary dislocations around the AlN/Mg interface during extrusion,which decreased the nucleation barrier and provided more heterogeneous nucleation sites forγ-Mg 17 Al 12 continuous precipi-tation.Meanwhile,95%of residual dislocations in as-extruded AlN/AZ91 composites were annihilated dur-ing peak-aging,suppressing the growth and coarsening of continuous precipitates.Therefore,high density of nano-sizedγ-Mg 17 Al 12 continuous precipitates was produced in as-extruded AlN/AZ91 composites af-ter peak-aging.During tension,gliding dislocations bypassed sphericalγ-Mg 17 Al 12 nano-precipitates by Orowan looping rather than cutting mechanism,which induced a strong block on dislocation motion.So high yield strength was mainly attributed to the high density of non-shearableγ-Mg 17 Al 12 nano-precipitates with spherical morphology,which was different from other Mg-Al-based systems.The results of texture evolution and slip trace analysis demonstrated that the suppression of extension twinning and less basal slip was due to the enhanced activity of pyramidalc+aslip in as-extruded AlN/AZ91 com-posites after peak-aging during the room temperature tension,meanwhile,the dislocation density of as-extruded AlN/AZ91 composites was significantly decreased during peak-aging,then higher elongation to fracture was achieved.展开更多
The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(...The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(SSCs)with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed(denoted as Ni-PxNy,x=1,2 and y=3,2).In CO_(2)reduction reaction(CO_(2)RR),the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification.Besides,Ni-P1N3 performed the highest CO Faradaic efficiency(FECO)of 85.0%–98.0%over a wide potential range of−0.65 to−0.95 V(vs.the reversible hydrogen electrode(RHE)).Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO_(2)intermediate adsorption/desorption,thereby accelerating the reaction kinetics and boosting CO_(2)RR activity.This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance,targetting to CO_(2)RR applications.展开更多
基金This work has been Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Besides,the authors gratefully appreciate the financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)Financial supports from the National Natural Science Foundation of China(Grant No.52174046)is also significantly acknowledged.
文摘Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.
基金financial support of the Science Foundation of China University of PetroleumBeijing(Grant No.2462020XKBH013)+1 种基金Financial supports from the National Natural Science Foundation of China(Grant No.51804316)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462017YJRC037)
文摘Nanofluid offers more opportunities and challenges over the traditional surfactant and polymer solutions during enhanced oil recovery(commonly referred to as tertiary oil recovery)due to its remarkable properties.This review mainly discusses the preparation methods of amphiphilic nanoparticles due to their higher interface activity than sole hydrophilic or hydrophobic nanoparticles(SHNPs).The nanofluids’stability is reviewed in this work.Moreover,the mechanisms of nanofluids in enhancing oil recovery(N-EOR)in terms of interfacial tension reduction,wettability alteration,foam stabilization,emulsion stabilization,structural disjoining pressure,and depressurization-increasing injection are mainly summarized and reviewed.Also,the synergistic effects of nanofluids and traditional surfactants and polymers are discussed.Finally,nanofluids’challenges and prospects are also outlined.The nanofluids can still be regarded as an outstanding candidate for enhancing oil recovery significantly in the future although there are limitations on their applications from laboratory scale to field scale.
基金supported by Project of Sinopec Northwest Oilfield Company(Grant No.202108ZB0046).
文摘The development of fractured-vuggy carbonate reservoirs is extremely difficult because of the complex fractured-vuggy structure and strong heterogeneity.Foam flooding is a potential enhanced oil recovery(EOR)technology in fractured-vuggy carbonate reservoirs.Based on the similarity criterion,three types of 2D visual physical models of the fractured-vuggy structure were made by laser ablation technique,and a 3D visual physical model of the fractured-vuggy reservoir was made by 3D printing technology.Then the physical analog experiments of foam flooding were carried out in these models.The experimental results show that foam can effectively improve the mobility ratio,control the flow velocity of the fluid in different directions,and sweep complex fracture networks.The effect of foam flooding in fractures can be improved by increasing foam strength and enhancing foam stability.The effect of foam flooding in vugs can be improved by reducing the density of the foam and the interfacial tension between foam and oil.Three types of microscopic residual oil and three types of macroscopic residual oil can be displaced by foam flooding.This study verifies the EOR of foam flooding in the fractured-vuggy reservoir and provides theoretical support for the application of foam flooding in fractured-vuggy reservoirs.
基金financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)The Science Foundation of China University of Petroleum,Beijing(Grant No.2462017YJRC037)+1 种基金Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Horizontal project of Sinopec Northwest Oilfield Company(Grant No.202108ZB0046)are also significantly acknowledged
文摘Plugging agents have been widely used to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,the harsh conditions of fractured-vuggy carbonate reservoirs yield a significant challenge in maintaining a long-term stabilization of plugging agents.In this work,we developed an anti-hightemperature and high-salinity polymer gel(APG)with excellent resistance to high temperature(140℃)and ultra-high salinity(240000 mg/L).The rheology and microstructure of APG were characterized before and after gelation.Core plugging tests on fractured cubic cores were conducted to quantify the plugging performance of the gel system.Experimental results showed that the Sclerglucan and Cobalt(Ⅱ)Chloride Hexahydrate filled the three-dimensional(3-D)network with various morphologies,providing extra protection to the cross-linking points of the 3D network structure of APG and thus,leading to a prolongation of the dehydration time.The dehydration rate of APG was only 5%within 30days,and the strength of APG could be maintained at a rigid or near-rigid level over 150 days.Moreover,APG exhibited satisfactory shear and scour resistance.Core plugging tests showed that APG could achieve a plugging rate of 90%and demonstrate ignorable minor damage to the substrate.Our results indicate that APG can serve as a great candidate in channel plugging in fractured-vuggy carbonate reservoirs where fractures are fully developed.
基金supported by the National Natural Science Foundation of China(Nos.52071268 and 51771151)the Key R&D Project of Shaanxi Province(No.2022GY-366)the Re-search Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2022-BJ-04).
文摘Age hardening is often used to optimize the mechanical properties of as-deformed Mg-based materials in industry,whereas the improvement of strength is usually accompanied by the significant loss of ductility,which hinders the application of Mg-based materials in structural components.In the present work,high strength-ductility synergy(the yield strength of 263±9 MPa,ultimate tensile strength of 398±7 MPa and elongation to fracture of 34%±1%)was realized in as-extruded AlN/AZ91 composites after optimiz-ing aging processes.Microstructural characterization shows that AlN particles induced a large number of geometrically necessary dislocations around the AlN/Mg interface during extrusion,which decreased the nucleation barrier and provided more heterogeneous nucleation sites forγ-Mg 17 Al 12 continuous precipi-tation.Meanwhile,95%of residual dislocations in as-extruded AlN/AZ91 composites were annihilated dur-ing peak-aging,suppressing the growth and coarsening of continuous precipitates.Therefore,high density of nano-sizedγ-Mg 17 Al 12 continuous precipitates was produced in as-extruded AlN/AZ91 composites af-ter peak-aging.During tension,gliding dislocations bypassed sphericalγ-Mg 17 Al 12 nano-precipitates by Orowan looping rather than cutting mechanism,which induced a strong block on dislocation motion.So high yield strength was mainly attributed to the high density of non-shearableγ-Mg 17 Al 12 nano-precipitates with spherical morphology,which was different from other Mg-Al-based systems.The results of texture evolution and slip trace analysis demonstrated that the suppression of extension twinning and less basal slip was due to the enhanced activity of pyramidalc+aslip in as-extruded AlN/AZ91 com-posites after peak-aging during the room temperature tension,meanwhile,the dislocation density of as-extruded AlN/AZ91 composites was significantly decreased during peak-aging,then higher elongation to fracture was achieved.
基金supported by the Beijing Natural Science Foundation(No.2212018)China National Petroleum Corporation(CNPC)Innovation Found(No.2021DQ02-0202)the National Natural Science Foundation of China(No.51902013).
文摘The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(SSCs)with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed(denoted as Ni-PxNy,x=1,2 and y=3,2).In CO_(2)reduction reaction(CO_(2)RR),the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification.Besides,Ni-P1N3 performed the highest CO Faradaic efficiency(FECO)of 85.0%–98.0%over a wide potential range of−0.65 to−0.95 V(vs.the reversible hydrogen electrode(RHE)).Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO_(2)intermediate adsorption/desorption,thereby accelerating the reaction kinetics and boosting CO_(2)RR activity.This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance,targetting to CO_(2)RR applications.