Clay minerals are one of the potential good adsorbent alternatives to activated carbon because of their large surface area and high cation exchange capacity. In this work the adsorptive properties of natural bentonite...Clay minerals are one of the potential good adsorbent alternatives to activated carbon because of their large surface area and high cation exchange capacity. In this work the adsorptive properties of natural bentonite and kaolin clay minerals in the removal of zinc (Zn2+) from aqueous solution have been studied by laboratory batch adsorption kinetic and equi- librium experiments. The result shows that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, but decreases with the amount of adsorbent and temperature of the system for both the ad- sorbents. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on bentonite and kaolin is a two-step process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreas- ing intraparticle diffusion in the interior of the adsorbent. This has also been confirmed by an intraparticle diffusion model. The equilibrium adsorption results are fitted better with the Langmuir isotherm compared to the Freundlich model. The value of separation factor, RL from Langmuir equation give an indication of favourable adsorption. Finally from thermodynamic studies, it has been found that the adsorption process is exothermic due to negative ?H0 accompa- nied by decrease in entropy change and Gibbs free energy change (?G0). Overall bentonite is a better adsorbent than kaolin in the the removal of Zn2+ from its aqueous solution.展开更多
This work deals with the effect of combined microwave-ultrasonic pretreatment on the anaerobic biodegradability of primary, excess activated and mixed sludge. The characteristics, biodegradability and anaerobic digest...This work deals with the effect of combined microwave-ultrasonic pretreatment on the anaerobic biodegradability of primary, excess activated and mixed sludge. The characteristics, biodegradability and anaerobic digester performance for untreated primary, excess activated and mixed sludge were compared to combined microwave-ultrasonic pretreated primary, excess activated and mixed sludge. All sludge samples were subjected to Microwave treatment at 2450 MHz, 800 W and 3 min followed by ultrasonic treatment at a density of 0.4 W/mL, amplitude of 90%, Intensity of 150 W, pulse of 55/5 for 6min. Methane production in pretreated primary sludge was significantly greater (11.9 ml/g TCOD) than the methane yield of the untreated primary sludge (7.9 ml/g TCOD). Cumulative methane production of pretreated Excess Activated Sludge (EAS) was higher (66.5 ml/g TCOD) than the methane yield from pretreated mixed sludge (44.1 ml/g TCOD). Furthermore, digested EAS showed significantly higher dewaterability (201 s) than digested primary sludge (305 s) or mixed sludge (522 s). The average Methane: Carbondioxide ratio from EAS (1.85) was higher than that for mixed untreated sludge (1.24). VS reduction was also higher for EAS than the other two sludge types. However, pretreatment of EAS resulted in significant reduction in dewaterability due to higher percentage of fine floc particles in the pretreated EAS.展开更多
文摘Clay minerals are one of the potential good adsorbent alternatives to activated carbon because of their large surface area and high cation exchange capacity. In this work the adsorptive properties of natural bentonite and kaolin clay minerals in the removal of zinc (Zn2+) from aqueous solution have been studied by laboratory batch adsorption kinetic and equi- librium experiments. The result shows that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, but decreases with the amount of adsorbent and temperature of the system for both the ad- sorbents. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on bentonite and kaolin is a two-step process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreas- ing intraparticle diffusion in the interior of the adsorbent. This has also been confirmed by an intraparticle diffusion model. The equilibrium adsorption results are fitted better with the Langmuir isotherm compared to the Freundlich model. The value of separation factor, RL from Langmuir equation give an indication of favourable adsorption. Finally from thermodynamic studies, it has been found that the adsorption process is exothermic due to negative ?H0 accompa- nied by decrease in entropy change and Gibbs free energy change (?G0). Overall bentonite is a better adsorbent than kaolin in the the removal of Zn2+ from its aqueous solution.
文摘This work deals with the effect of combined microwave-ultrasonic pretreatment on the anaerobic biodegradability of primary, excess activated and mixed sludge. The characteristics, biodegradability and anaerobic digester performance for untreated primary, excess activated and mixed sludge were compared to combined microwave-ultrasonic pretreated primary, excess activated and mixed sludge. All sludge samples were subjected to Microwave treatment at 2450 MHz, 800 W and 3 min followed by ultrasonic treatment at a density of 0.4 W/mL, amplitude of 90%, Intensity of 150 W, pulse of 55/5 for 6min. Methane production in pretreated primary sludge was significantly greater (11.9 ml/g TCOD) than the methane yield of the untreated primary sludge (7.9 ml/g TCOD). Cumulative methane production of pretreated Excess Activated Sludge (EAS) was higher (66.5 ml/g TCOD) than the methane yield from pretreated mixed sludge (44.1 ml/g TCOD). Furthermore, digested EAS showed significantly higher dewaterability (201 s) than digested primary sludge (305 s) or mixed sludge (522 s). The average Methane: Carbondioxide ratio from EAS (1.85) was higher than that for mixed untreated sludge (1.24). VS reduction was also higher for EAS than the other two sludge types. However, pretreatment of EAS resulted in significant reduction in dewaterability due to higher percentage of fine floc particles in the pretreated EAS.