The mechanisms that promote liver injury in non-alcoholic fatty liver disease(NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required....The mechanisms that promote liver injury in non-alcoholic fatty liver disease(NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis of NAFLD and represents a potential target for treatment. Relationships between serum ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of hepatic iron in NAFLD have been demonstrated in animal and cell culture models. However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding further complexity, multiple strands of evidence support an effect of NAFLD itself on iron metabolism. In this review, we summarise the human and basic science data that has evaluated the role of iron in NAFLD pathogenesis.展开更多
AIM To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe^(-/-)high calorie diet model of steatohepatitis.METHODS Hfe^(-/-)C57BL/6J mice were fed either a high calorie diet or...AIM To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe^(-/-)high calorie diet model of steatohepatitis.METHODS Hfe^(-/-)C57BL/6J mice were fed either a high calorie diet or a high calorie diet with 1 mg/g curcumin; 1.5 mg/g vitamin E; or combination of 1 mg/g curcumin + 1.5 mg/g vitamin E for 20 wk. Serum and liver tissue were collected at the completion of the experiment. Liver histology was graded by a pathologist for steatosis, inflammation and fibrosis. RNA and protein was extracted from liver tissue to examine gene and protein expression associated with fatty acid oxidation, mitochondrial biogenesis and oxidative stress pathways.RESULTS Hfe^(-/-)mice fed the high calorie diet developed steatohepatitis and pericentral fibrosis. Combination treatment with curcumin and vitamin E resulted in a greater reduction of percent steatosis than either vitamin E or curcumin therapy alone. Serum alanine aminotransferase and non-alcoholic fatty liver disease(NAFLD) activity score were decreased following combination therapy with curcumin and vitamin E compared with high calorie diet alone. No changes were observed in inflammatory or fibrosis markers following treatment. Epididymal fat pad weights were significantly reduced following combination therapy, however total body weight and liver weight were unchanged. Combination therapy increased the m RNA expression of Adipo R2, Ppar-α, Cpt1 a, Nrf-1 and Tfb2 m suggesting enhanced fatty acid oxidation and mitochondrial biogenesis. In addition, combination treatment resulted in increased catalase activity in Hfe^(-/-)mice. CONCLUSION Combination curcumin and vitamin E treatment decreases liver injury in this steatohepatitis model, indicating that combination therapy may be of value in NAFLD.展开更多
Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutatio...Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. Ar~ adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.展开更多
AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was...AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied,with all subjects having liver biopsy data and DNA available for testing.This study assessed the association of eight single nucleotide polymorphisms(SNPs)in a total of six genes including toll-like receptor 4(TLR4),transforming growth factor-beta(TGF-β),oxoguanine DNA glycosylase,monocyte chemoattractant protein 1,chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity.Genotyping was performed using high resolution melt analysis and sequencing.The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration.RESULTS:There were significant associations between the cofactors of male gender(P=0.0001),increasing age(P=0.006),alcohol consumption(P=0.0001),steatosis(P=0.03),hepatic iron concentration(P<0.0001)and the presence of hepatic fibrosis.Of the candidate gene polymorphisms studied,none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors.We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied.Importantly,in this large,well characterised cohort of patients there was no association between SNPs for TGF-βor TLR4and the presence of fibrosis,cirrhosis or increasing fibrosis stage in multivariate analysis.CONCLUSION:In our large,well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis.展开更多
文摘The mechanisms that promote liver injury in non-alcoholic fatty liver disease(NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis of NAFLD and represents a potential target for treatment. Relationships between serum ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of hepatic iron in NAFLD have been demonstrated in animal and cell culture models. However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding further complexity, multiple strands of evidence support an effect of NAFLD itself on iron metabolism. In this review, we summarise the human and basic science data that has evaluated the role of iron in NAFLD pathogenesis.
文摘AIM To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe^(-/-)high calorie diet model of steatohepatitis.METHODS Hfe^(-/-)C57BL/6J mice were fed either a high calorie diet or a high calorie diet with 1 mg/g curcumin; 1.5 mg/g vitamin E; or combination of 1 mg/g curcumin + 1.5 mg/g vitamin E for 20 wk. Serum and liver tissue were collected at the completion of the experiment. Liver histology was graded by a pathologist for steatosis, inflammation and fibrosis. RNA and protein was extracted from liver tissue to examine gene and protein expression associated with fatty acid oxidation, mitochondrial biogenesis and oxidative stress pathways.RESULTS Hfe^(-/-)mice fed the high calorie diet developed steatohepatitis and pericentral fibrosis. Combination treatment with curcumin and vitamin E resulted in a greater reduction of percent steatosis than either vitamin E or curcumin therapy alone. Serum alanine aminotransferase and non-alcoholic fatty liver disease(NAFLD) activity score were decreased following combination therapy with curcumin and vitamin E compared with high calorie diet alone. No changes were observed in inflammatory or fibrosis markers following treatment. Epididymal fat pad weights were significantly reduced following combination therapy, however total body weight and liver weight were unchanged. Combination therapy increased the m RNA expression of Adipo R2, Ppar-α, Cpt1 a, Nrf-1 and Tfb2 m suggesting enhanced fatty acid oxidation and mitochondrial biogenesis. In addition, combination treatment resulted in increased catalase activity in Hfe^(-/-)mice. CONCLUSION Combination curcumin and vitamin E treatment decreases liver injury in this steatohepatitis model, indicating that combination therapy may be of value in NAFLD.
文摘Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. Ar~ adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.
基金Supported by NHMRC Medical Postgraduate Scholarship and the Royal Brisbane and Women’s Hospital Research Foundation to Wood MJthe National Health and Medical Research Council(NHMRC)to Ramm GA and Powell LW+1 种基金the recipient of an NHMRC Senior Research Fellowship,1024672 to Subramaniam VNan NHMRC Senior Research Fellowship,No.552409 to Ramm GA
文摘AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied,with all subjects having liver biopsy data and DNA available for testing.This study assessed the association of eight single nucleotide polymorphisms(SNPs)in a total of six genes including toll-like receptor 4(TLR4),transforming growth factor-beta(TGF-β),oxoguanine DNA glycosylase,monocyte chemoattractant protein 1,chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity.Genotyping was performed using high resolution melt analysis and sequencing.The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration.RESULTS:There were significant associations between the cofactors of male gender(P=0.0001),increasing age(P=0.006),alcohol consumption(P=0.0001),steatosis(P=0.03),hepatic iron concentration(P<0.0001)and the presence of hepatic fibrosis.Of the candidate gene polymorphisms studied,none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors.We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied.Importantly,in this large,well characterised cohort of patients there was no association between SNPs for TGF-βor TLR4and the presence of fibrosis,cirrhosis or increasing fibrosis stage in multivariate analysis.CONCLUSION:In our large,well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis.