期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Classifying Big Medical Data through Bootstrap Decision Forest Using Penalizing Attributes
1
作者 v.gowri V.Vijaya Chamundeeswari 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3675-3690,共16页
Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accu... Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively.In this work,we pro-pose a bootstrap decision forest using penalizing attributes(BFPA)algorithm to predict heart disease with higher accuracy.This work integrates a significance-based attribute selection(SAS)algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness.The pro-posed SAS algorithm is used to determine the correlation among attributes and to select the optimum subset of feature space for learning and testing processes.BFPA selects the optimal number of learning and testing data points as well as the density of trees in the forest to realize higher prediction accuracy in classifying imbalanced datasets effectively.The effectiveness of the developed classifier is cautiously verified on the real-world database(i.e.,Heart disease dataset from UCI repository)by relating its enactment with many advanced approaches with respect to the accuracy,sensitivity,specificity,precision,and intersection over-union(IoU).The empirical results demonstrate that the intended classification approach outdoes other approaches with superior enactment regarding the accu-racy,precision,sensitivity,specificity,and IoU of 94.7%,99.2%,90.1%,91.1%,and 90.4%,correspondingly.Additionally,we carry out Wilcoxon’s rank-sum test to determine whether our proposed classifier with feature selection method enables a noteworthy enhancement related to other classifiers or not.From the experimental results,we can conclude that the integration of SAS and BFPA outperforms other classifiers recently reported in the literature. 展开更多
关键词 Data classification decision forest feature selection healthcare data heart disease prediction penalizing attributes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部