Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacteri...Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.展开更多
DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wid...DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wide range of diseases. This vaccine platform presents several attributes that confer distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. Many aspects, such as antigen expression and especially vector design, are under study because of their great influence on immunogenicity and efficacy of DNA vaccines. In this regard, with the attempt of improving the efficiency of DNA vaccines, co-expression of stimulatory sequences and diverse vector delivery systems are being optimized. With this in mind, this review aims to giving a conceptual approach of DNA vaccines, explaining their mechanisms of action and listing the already licensed veterinary DNA vaccines presented in the market.展开更多
The use of probiotic bacteria derived from fermented foods has been explored by the scientific community as alternative strategies for the treatment of several diseases,mainly regarding intestinal dysfunction.One of t...The use of probiotic bacteria derived from fermented foods has been explored by the scientific community as alternative strategies for the treatment of several diseases,mainly regarding intestinal dysfunction.One of the most relevant inflammatory diseases affecting the alimentary tract,for which no current intervention is entirely successful,is mucositis.In this review article,we summarize the most recent proof-of-concept studies dealing with the therapeutic use of dairy origin probiotics,for the treatment of gastrointestinal mucositis.Furthermore,we discuss several approaches for the improvement of the classical therapeutic rationale,such as supplementation with prebiotics and genetic engineering along with the respective translational issues,which may be crucial for the successful transposition of these therapeutic strategies for clinical use.展开更多
基金Supported by Coordenao de Aperfeioamento de Pessoal de Nível Superior(CAPES)in Brazil,processes BEX 12954-12-8 and 11517-12-3,to Barbosa EGV and Aburjaile FF
文摘Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.
文摘DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wide range of diseases. This vaccine platform presents several attributes that confer distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. Many aspects, such as antigen expression and especially vector design, are under study because of their great influence on immunogenicity and efficacy of DNA vaccines. In this regard, with the attempt of improving the efficiency of DNA vaccines, co-expression of stimulatory sequences and diverse vector delivery systems are being optimized. With this in mind, this review aims to giving a conceptual approach of DNA vaccines, explaining their mechanisms of action and listing the already licensed veterinary DNA vaccines presented in the market.
文摘The use of probiotic bacteria derived from fermented foods has been explored by the scientific community as alternative strategies for the treatment of several diseases,mainly regarding intestinal dysfunction.One of the most relevant inflammatory diseases affecting the alimentary tract,for which no current intervention is entirely successful,is mucositis.In this review article,we summarize the most recent proof-of-concept studies dealing with the therapeutic use of dairy origin probiotics,for the treatment of gastrointestinal mucositis.Furthermore,we discuss several approaches for the improvement of the classical therapeutic rationale,such as supplementation with prebiotics and genetic engineering along with the respective translational issues,which may be crucial for the successful transposition of these therapeutic strategies for clinical use.