This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion s...This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.展开更多
The dependence of the directions of polarization of exciton emissions, fine structure splittings (FSS), and polarization anisotropy on the light- and heavy-hole (LH-HH) mixing in semiconductor quantum dots (QDs)...The dependence of the directions of polarization of exciton emissions, fine structure splittings (FSS), and polarization anisotropy on the light- and heavy-hole (LH-HH) mixing in semiconductor quantum dots (QDs) is investigated using a mesoscopic model. In general, all QDs have a four-fold exciton ground state. Two exciton states have directions of polarization in the growth-plane, while the other two are along the growth direction of the QD. The LH-HH mixing does affect the FSS and polarization anisotropy of bright exciton states in the growth-plane in the low symmetry QDs (e.g., C2v, CS, C1 ), while it has no effect on the FSS and polarization anisotropy in high symmetry QDs (e.g., C3V, D2d). When the hole ground state is pure HH or LH, the bright exciton states in the growth-plane are normal to each other. The LH-HH mixing affects the relative intensities and directions of bright exciton states in the growth-plane of the QD. The polarization anisotropy of exciton emissions in the growth-plane of the QD is independent of the phase angle of LH-HH mixing but strongly depends on the magnitude of LH-HH mixing in low symmetry QDs.展开更多
Tremendous efforts have been devoted to the enhancement of drug solubility using nanotechnologies, but few of them are capable to produce drug particles with sizes less than a few nanometers. This challenge has been a...Tremendous efforts have been devoted to the enhancement of drug solubility using nanotechnologies, but few of them are capable to produce drug particles with sizes less than a few nanometers. This challenge has been addressed here by using biocompatible versatile γ-cyclodextrin(γ-CD) metal-organic framework(CD-MOF) large molecular cages in which azilsartan(AZL) was successfully confined producing clusters in the nanometer range. This strategy allowed to improve the bioavailability of AZL in Sprague–Dawley rats by 9.7-fold after loading into CD-MOF. The apparent solubility of AZL/CD-MOF was enhanced by 340-fold when compared to the pure drug. Based on molecular modeling, a dual molecular mechanism of nanoclusterization and complexation of AZL inside the CD-MOF cages was proposed, which was confirmed by small angle X-ray scattering(SAXS) and synchrotron radiation-Fourier transform infrared spectroscopy(SR-FTIR) techniques. In a typical cage-like unit of CD-MOF, three molecules of AZL were included by the γ-CD pairs, whilst other three AZL molecules formed a nanocluster inside the 1.7 nm sized cavity surrounded by six γ-CDs. This research demonstrates a dual molecular mechanism of complexation and nanoclusterization in CD-MOF leading to significant improvement in the bioavailability of insoluble drugs.展开更多
In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate(SDS) a...In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate(SDS) and β-cyclodextrin(β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated.The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different p H values were investigated. The insulin loaded vesicles–chitosan hydrogel(IVG) improved the dilution stability of the vesicles and provided p H-selective sustained release compared with insulin solution–chitosan hydrogel(ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.展开更多
基金the financial support from the National Natural Science Foundation of China(No.81430087)the National Science and Technology Major Project(2013ZX09402103)
文摘This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.
文摘The dependence of the directions of polarization of exciton emissions, fine structure splittings (FSS), and polarization anisotropy on the light- and heavy-hole (LH-HH) mixing in semiconductor quantum dots (QDs) is investigated using a mesoscopic model. In general, all QDs have a four-fold exciton ground state. Two exciton states have directions of polarization in the growth-plane, while the other two are along the growth direction of the QD. The LH-HH mixing does affect the FSS and polarization anisotropy of bright exciton states in the growth-plane in the low symmetry QDs (e.g., C2v, CS, C1 ), while it has no effect on the FSS and polarization anisotropy in high symmetry QDs (e.g., C3V, D2d). When the hole ground state is pure HH or LH, the bright exciton states in the growth-plane are normal to each other. The LH-HH mixing affects the relative intensities and directions of bright exciton states in the growth-plane of the QD. The polarization anisotropy of exciton emissions in the growth-plane of the QD is independent of the phase angle of LH-HH mixing but strongly depends on the magnitude of LH-HH mixing in low symmetry QDs.
基金financial support from the Project funded by the National Science and Technology Major Projects for the Major New Drugs Innovation and Development (2018ZX09721002-009, China)Strategic Priority Research Program of Chinese Academy of Sciences (XDA12050307)+1 种基金National Natural Science Foundation of China (81430087)China Postdoctoral Science Foundation (2017M610284)
文摘Tremendous efforts have been devoted to the enhancement of drug solubility using nanotechnologies, but few of them are capable to produce drug particles with sizes less than a few nanometers. This challenge has been addressed here by using biocompatible versatile γ-cyclodextrin(γ-CD) metal-organic framework(CD-MOF) large molecular cages in which azilsartan(AZL) was successfully confined producing clusters in the nanometer range. This strategy allowed to improve the bioavailability of AZL in Sprague–Dawley rats by 9.7-fold after loading into CD-MOF. The apparent solubility of AZL/CD-MOF was enhanced by 340-fold when compared to the pure drug. Based on molecular modeling, a dual molecular mechanism of nanoclusterization and complexation of AZL inside the CD-MOF cages was proposed, which was confirmed by small angle X-ray scattering(SAXS) and synchrotron radiation-Fourier transform infrared spectroscopy(SR-FTIR) techniques. In a typical cage-like unit of CD-MOF, three molecules of AZL were included by the γ-CD pairs, whilst other three AZL molecules formed a nanocluster inside the 1.7 nm sized cavity surrounded by six γ-CDs. This research demonstrates a dual molecular mechanism of complexation and nanoclusterization in CD-MOF leading to significant improvement in the bioavailability of insoluble drugs.
文摘In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate(SDS) and β-cyclodextrin(β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated.The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different p H values were investigated. The insulin loaded vesicles–chitosan hydrogel(IVG) improved the dilution stability of the vesicles and provided p H-selective sustained release compared with insulin solution–chitosan hydrogel(ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.