期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
1
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li vlad stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Optimizing the oxide support composition in Pr-doped CeO_(2) towards highly active and selective Ni-based CO_(2) methanation catalysts 被引量:2
2
作者 Anastasios I.Tsiotsias Nikolaos D.Charisiou +9 位作者 Ayesha AlKhoori Safa Gaber vlad stolojan Victor Sebastian Bart van der Linden Atul Bansode Steven J.Hinder Mark A.Baker Kyriaki Polychronopoulou Maria A.Goula 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期547-561,I0015,共16页
In this study,Ni catalysts supported on Pr-doped Ce O_(2) are studied for the CO_(2) methanation reaction and the effect of Pr doping on the physicochemical properties and the catalytic performance is thoroughly evalu... In this study,Ni catalysts supported on Pr-doped Ce O_(2) are studied for the CO_(2) methanation reaction and the effect of Pr doping on the physicochemical properties and the catalytic performance is thoroughly evaluated.It is shown,that Pr^(3+)ions can substitute Ce^(4+)ones in the support lattice,thereby introducing a high population of oxygen vacancies,which act as active sites for CO_(2) chemisorption.Pr doping can also act to reduce the crystallite size of metallic Ni,thus promoting the active metal dispersion.Catalytic performance evaluation evidences the promoting effect of low Pr loadings(5 at%and 10 at%)towards a higher catalytic activity and lower CO_(2) activation energy.On the other hand,higher Pr contents negate the positive effects on the catalytic activity by decreasing the oxygen vacancy population,thereby creating a volcano-type trend towards an optimum amount of aliovalent substitution. 展开更多
关键词 Power-to-gas CO_(2)methanation Ni-based catalyst Pr-doped CeO_(2) Oxygen vacancy Catalytic activity Activation energy
下载PDF
Zinc-Based Metal-Organic Frameworks for High-Performance Supercapacitor Electrodes:Mechanism Underlying Pore Generation 被引量:1
3
作者 Shigeyuki Umezawa Takashi Douura +6 位作者 Koji Yoshikawa Daisuke Tanaka vlad stolojan S.Ravi P.Silva Mika Yoneda Kazuma Gotoh Yasuhiko Hayashi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期100-112,共13页
Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(... Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(4)O_(4)Zn(ZMOF2),were prepared.ZMOF1 and ZMOF2 were carbonized at 1000℃,forming CZMOF1 and CZMOF2,respectively.The specific surface area(S_(BET))of CZMOF2 was~2700 m^(2)g^(−1),much higher than that of CZMOF1(~1300 m^(2)g^(−1)).A supercapacitor electrode based on CZMOF2 achieved specific capacitances of 360,278,and 221 F g^(−1)at 50,250,and 1000 mA g^(−1)in an aqueous electrolyte(H2SO_(4)),respectively,the highest values reported to date for ZMOF-derived electrodes under identical conditions.The practical applicability of the CZMOF-based supercapacitor was verified in non-aqueous electrolytes.The initial capacitance retention was 78%after 100000 charge/discharge cycles at 10 A g^(−1).Crucially,the high capacitance of CZMOF2 arises from pore generation during carbonization.Below 1000℃,pore generation is dominated by the Zn/C ratio of ZMOFs,as carbon atoms reduce the zinc oxides formed during carbonization.Above 1000℃,a high O/C ratio becomes essential for pore generation because the oxygen functional groups are pyrolyzed.These findings will provide insightful information for other metal-based MOFderived multifunctional carbons. 展开更多
关键词 metal-organic frameworks pore generation porous carbons SUPERCAPACITOR zinc oxides
下载PDF
Effect of Surfactants on the Thermoelectric Performance of Double-Walled Carbon Nanotubes 被引量:1
4
作者 Zakaria Saadi Simon G.King +2 位作者 Jose V.Anguita vlad stolojan S.Ravi P.Silva 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期274-280,共7页
Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made... Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made of expensive ceramics.The challenge in developing better performing materials is in disrupting the electrical vs thermal conductivity correlation,to achieve low thermal conductivity simultaneously with a high electrical conductivity.Carbon nanotubes allow for the decoupling of the electronic density of states from the phonon density of states and this paper shows that flexible,thin films of double-walled carbon nanotube(DWCNT)can form effective n-and p-doped semiconductors that can achieve a combined Seebeck coefficient of 157.6µV K^(−1),the highest reported for a single DWCNT device to date.This is achieved through selected surfactant doping,whose role is correlated with the length of the hydrocarbon chain of the hydrophobic tail group of the surfactant’s molecules.CNTs functionalized with Triton X-405 show the highest output power consisting of a single junction of p-and n-type thermoelectric elements,reaching as high as 67 nW for a 45 K temperature gradient.Thus enabling flexible,cheaper,and more efficient thermoelectric generators through the use of functionalized CNTs. 展开更多
关键词 carbon nanotubes DWCNT FUNCTIONALIZATION SURFACTANT THERMOELECTRIC
下载PDF
Suppression of Self-Discharge in Aqueous Supercapacitor Devices Incorporating Highly Polar Nanofiber Separators 被引量:1
5
作者 Wesley G.Buxton Simon G.King vlad stolojan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期74-86,共13页
One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous deca... One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage. 展开更多
关键词 piezoelectric polar nanofibers PVDF separators SELF-DISCHARGE SUPERCAPACITORS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部