Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanica...Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools.展开更多
Migration has been most active among three maior population movements and affective to population distribution. However, this paper first finds that the pattern of China's inter-provincial migration is robust shace C...Migration has been most active among three maior population movements and affective to population distribution. However, this paper first finds that the pattern of China's inter-provincial migration is robust shace China's reibrming mad opening based on the analysis on the distribution of inter-provincial migration scale, intensity and population flow. Therelbre,展开更多
基金Fouded by the National Natural Science Foundation of China(No.51175308)the National Science and Technology Major Project of China(No.2012ZX04010032)。
文摘Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools.
文摘Migration has been most active among three maior population movements and affective to population distribution. However, this paper first finds that the pattern of China's inter-provincial migration is robust shace China's reibrming mad opening based on the analysis on the distribution of inter-provincial migration scale, intensity and population flow. Therelbre,