Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
有机-无机杂化甲氨铅碘类钙钛矿太阳能电池在制备及使用过程中,甲氨铅碘层中的甲基铵离子易分解为甲基离子/基团和氨离子/基团,其中氨离子/基团可以扩散进入铟锡氧化物(indium tin oxide,ITO)透明电极层,并影响ITO的电学性质.本文通过...有机-无机杂化甲氨铅碘类钙钛矿太阳能电池在制备及使用过程中,甲氨铅碘层中的甲基铵离子易分解为甲基离子/基团和氨离子/基团,其中氨离子/基团可以扩散进入铟锡氧化物(indium tin oxide,ITO)透明电极层,并影响ITO的电学性质.本文通过低能氨离子束与ITO薄膜表面相互作用,研究低能氨离子/基团在ITO薄膜表面扩散过程,及其对ITO薄膜电学性质的影响规律.研究结果表明,低能氨离子/基团在ITO薄膜表面扩散过程中,主要与ITO晶格中的O元素结合形成In/Sn-O-N键.ITO不同晶面的O元素含量不同,低能氨离子/基团能够在无择优ITO薄膜表面的各个晶面进行扩散,因此将严重影响其电学性质,导致无择优ITO薄膜电阻率增加约6个数量级.但(100)择优取向ITO薄膜的主晶面为(100)晶面,最外层由In/Sn元素构成,不含O元素.因此(100)择优取向ITO薄膜能够有效地抑制低能氨离子/基团扩散,并保持原始电学性质.最终,(100)择优取向ITO薄膜有望成为理想的有机-无机杂化甲氨铅碘类钙钛矿太阳能电池用透明电极层材料.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
文摘有机-无机杂化甲氨铅碘类钙钛矿太阳能电池在制备及使用过程中,甲氨铅碘层中的甲基铵离子易分解为甲基离子/基团和氨离子/基团,其中氨离子/基团可以扩散进入铟锡氧化物(indium tin oxide,ITO)透明电极层,并影响ITO的电学性质.本文通过低能氨离子束与ITO薄膜表面相互作用,研究低能氨离子/基团在ITO薄膜表面扩散过程,及其对ITO薄膜电学性质的影响规律.研究结果表明,低能氨离子/基团在ITO薄膜表面扩散过程中,主要与ITO晶格中的O元素结合形成In/Sn-O-N键.ITO不同晶面的O元素含量不同,低能氨离子/基团能够在无择优ITO薄膜表面的各个晶面进行扩散,因此将严重影响其电学性质,导致无择优ITO薄膜电阻率增加约6个数量级.但(100)择优取向ITO薄膜的主晶面为(100)晶面,最外层由In/Sn元素构成,不含O元素.因此(100)择优取向ITO薄膜能够有效地抑制低能氨离子/基团扩散,并保持原始电学性质.最终,(100)择优取向ITO薄膜有望成为理想的有机-无机杂化甲氨铅碘类钙钛矿太阳能电池用透明电极层材料.