Natural assemblages of marine bacteria were chosen in a batch culture experiments. The impact of varying nitrogen substrate concentrations and the substrate C:N ratios (C:Ns) on the bacterial C:N ratio (C:NB),...Natural assemblages of marine bacteria were chosen in a batch culture experiments. The impact of varying nitrogen substrate concentrations and the substrate C:N ratios (C:Ns) on the bacterial C:N ratio (C:NB), the bacterial growth efficiency (BGE) and ammonium regeneration was mainly examined. The C:Ns ratios varied from 5:1 (carbon limitation) to 40:1 (nitrogen limitation) with varying combinations of glucose and NO3. The C:NB ratio had positive relationship with the C:Ns ratio (r=0.93, n=8), whose value was 3.77 when the C:Ns ratio was 5:1 but increased to 6.47 when the C:Ns ratio was 40:1. These results indicate that the C:NB ratio is a potential diagnostic tool for determining the bacterial growth in natural waters controlled by either, carbon or nitrogen. BGE decreased with the declining nitrate concentration and negatively related to C:N8 (r=-0.51, n=8). The average value of BGE was 0.20. This value was a little lower than other reports, which could be induced by the nitrogen source used in our experiments. Finally, regeneration time of ammonium delayed with the increasing C:Ns ratio, which indicates that there were different metabolism mechanisms when bacterial growth was limited by carbon source and nitrogen source.展开更多
基金The Key Program of International Science and Technology Cooperation from the Ministry of Science and Technology of China under contract No.2004DFA03600the Plan of National Key Basic Research and Development Program Item of China under contract No.2001CB409703the Qingdao Natural Science Foundation of China under contract No. 04-2-JZ-88
文摘Natural assemblages of marine bacteria were chosen in a batch culture experiments. The impact of varying nitrogen substrate concentrations and the substrate C:N ratios (C:Ns) on the bacterial C:N ratio (C:NB), the bacterial growth efficiency (BGE) and ammonium regeneration was mainly examined. The C:Ns ratios varied from 5:1 (carbon limitation) to 40:1 (nitrogen limitation) with varying combinations of glucose and NO3. The C:NB ratio had positive relationship with the C:Ns ratio (r=0.93, n=8), whose value was 3.77 when the C:Ns ratio was 5:1 but increased to 6.47 when the C:Ns ratio was 40:1. These results indicate that the C:NB ratio is a potential diagnostic tool for determining the bacterial growth in natural waters controlled by either, carbon or nitrogen. BGE decreased with the declining nitrate concentration and negatively related to C:N8 (r=-0.51, n=8). The average value of BGE was 0.20. This value was a little lower than other reports, which could be induced by the nitrogen source used in our experiments. Finally, regeneration time of ammonium delayed with the increasing C:Ns ratio, which indicates that there were different metabolism mechanisms when bacterial growth was limited by carbon source and nitrogen source.