Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份...针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份为状态,用各月填筑工作面对应的填筑可达强度约束动作空间,综合考虑节点工期、总工期、坝面施工机械费用和土石方调运费用等因素构造奖励函数。此外,结合本文研究问题的特点,对MCTS迭代中的上限置信区间算法(upper confidence bound apply to tree,UCT)进行了改进和比较分析,最后以一个工程实例对本文提出模型的有效性进行了验证分析。结果表明,与施工仿真相比,以MCTS为框架的土石方动态调配模型的计算分析时间大大减少,为土石方动态调配问题提供了新的模型与手段。展开更多
基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文...基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文本知识挖掘效率,本文提出了一种结合文本分类与文本挖掘技术的隐患文本知识挖掘方法。该方法利用RoBERTa-wwm-CNN混合深度学习模型进行隐患文本快速智能分类,在此基础上,通过绘制隐患词云图实现不同种类隐患管理要点的可视化分析,以词共现网络构建为基础,分析隐患数据间的内在联系。将该方法应用于白鹤滩水电站安全隐患文本挖掘分析,与现有较先进的文本分类模型相比,本文所提模型精度有所提升,验证了所提模型的优越性。展开更多
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.
文摘针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份为状态,用各月填筑工作面对应的填筑可达强度约束动作空间,综合考虑节点工期、总工期、坝面施工机械费用和土石方调运费用等因素构造奖励函数。此外,结合本文研究问题的特点,对MCTS迭代中的上限置信区间算法(upper confidence bound apply to tree,UCT)进行了改进和比较分析,最后以一个工程实例对本文提出模型的有效性进行了验证分析。结果表明,与施工仿真相比,以MCTS为框架的土石方动态调配模型的计算分析时间大大减少,为土石方动态调配问题提供了新的模型与手段。
文摘基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文本知识挖掘效率,本文提出了一种结合文本分类与文本挖掘技术的隐患文本知识挖掘方法。该方法利用RoBERTa-wwm-CNN混合深度学习模型进行隐患文本快速智能分类,在此基础上,通过绘制隐患词云图实现不同种类隐患管理要点的可视化分析,以词共现网络构建为基础,分析隐患数据间的内在联系。将该方法应用于白鹤滩水电站安全隐患文本挖掘分析,与现有较先进的文本分类模型相比,本文所提模型精度有所提升,验证了所提模型的优越性。