Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was ...Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was employed to study the disturbance phenomena which occurred in the Diexi lake sediments. The results show that the disturbance phenomena were caused by liquefaction-induced flows in the unconsolidated lacustrine sediments, due to triggering by earthquakes. The deformations only occurred in unconsolidated sediment layers and not in consolidated layers. This means that a consolidated layer cannot be liquefied and disturbed again by an earthquake for a second time. The disturbance on one layer corresponds to only one earthquake. The temporal occurrence of earthquakes could be determined by disturbance layers generated at different ages. In total, 10 disturbed layers were found in the lacustrine sediments of the Diexi lake. The experiments showed that there were more than 10 earthquakes between 30 ka B.P. and 15 ka B.P. in the Diexi lake area based on the dating of the disturbed sediment layers.展开更多
In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet....In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this pap...In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this paper,the soft-sediment disturbances caused by earthquakes in the Diexi ancient dammed lake were studied based on field investigations and laboratory core observations.A two-to three-degree-of-freedom spring-type earthquake simulation vibration table was used to carry out disturbance tests on lacustrine sediments under different dynamic conditions.The results support the following conclusions:(1)The disturbance layers in the lacustrine sediments were caused by strong earthquakes in the region.(2)The characteristics of the disturbance layers are related to the seismic parameters and the degree of sediment consolidation.(3)The greater the earthquake intensity is,the greater the disturbance amplitude is;moreover,the lower the consolidation degree is,the greater the disturbance amplitude.(4)The simulation tests verify that the disturbance layers in the sediments of the Diexi ancient dammed lake correspond to strong earthquakes in the region.These results are valuable for ongoing palaeoseismic research in the region.展开更多
The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed l...The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed lake.The outburst of the ancient dammed lake would certainly have had an impact on the Chengdu Plain in the lower reaches of the Minjiang River.In this paper,on-site sampling and laboratory analysis were used to analyze the sediments of the Diexi ancient dammed lake and the Jinsha site in Chengdu Plain,and the environmental indicators of each sediment layer were tested.Through a comparative analysis of the environmental indicators in the sediments at the two locations,the following results were obtained:the palaeoclimatic and palaeoenvironmental characteristics at the two locations generally show consistent changes.The most important finding is that the types and content of the major pollen taxa at the two locations are similar.The Pinus content strongly proves that the soil layers at the Jinsha site was sourced from the upper reaches of the Minjiang River.Considering that the demise of the ancient culture at the Jinsha site occurred close in time to the outburst of the ancient dammed lake,this similarity suggests that the cultural change at the Jinsha site may have been related to the outburst of the Diexi ancient dammed lake.展开更多
This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been t...This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been the focus of active researches because they are associated with fast movement of large-scale landslides.A shaking table experiment was set up to mimic weak-intercalated rock slope under seismic loads.Excessive cavity gas pressure would be produced in weak spots upon a sudden vibration load.The drastically elevated gas pressure is believed to be responsible for the creation of cavities surrounding the tension fracture.With dissipation of the excessive cavity gas pressure,the fractures are in unbounded closed-state.This observation explains that the slope body would be split and loosened under several aftershocks,and with the expanding of the cracks,the slope failure eventually occurred.The research of the mechanism of cavity gas pressure could provide a novel insight into the formation mechanism of landslides under seismic load and has implications for the disaster prevention and control theory for the slope stability evaluation.展开更多
We present exact results for the electronic transport properties of graphene sheets connected to two metallic electrodes.Our results obtained by transfer-matrix methods are valid for all sheet widths and lengths.In th...We present exact results for the electronic transport properties of graphene sheets connected to two metallic electrodes.Our results obtained by transfer-matrix methods are valid for all sheet widths and lengths.In the limit of the large width-to-length ratio relevant to recent experiments,we find a Dirac-point conductivity of 2e^(2) / (√3)h and a sub-Poissonian Fano factor of 2 - 3(√3)/π(≌) 0.346 for armchair graphene;for the zigzag geometry they are respectively 0 and 1.Our results reflect essential effects from both the topology of graphene and the electronic structure of the leads,giving a complete microscopic understanding of the unique intrinsic transport in graphene.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41072230)Funding of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2012Z008)
文摘Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was employed to study the disturbance phenomena which occurred in the Diexi lake sediments. The results show that the disturbance phenomena were caused by liquefaction-induced flows in the unconsolidated lacustrine sediments, due to triggering by earthquakes. The deformations only occurred in unconsolidated sediment layers and not in consolidated layers. This means that a consolidated layer cannot be liquefied and disturbed again by an earthquake for a second time. The disturbance on one layer corresponds to only one earthquake. The temporal occurrence of earthquakes could be determined by disturbance layers generated at different ages. In total, 10 disturbed layers were found in the lacustrine sediments of the Diexi lake. The experiments showed that there were more than 10 earthquakes between 30 ka B.P. and 15 ka B.P. in the Diexi lake area based on the dating of the disturbed sediment layers.
基金financially supported by the China National Nature Science Foundation(No.41072230,No.41572308,No.41977226)the State Key Laboratory of Geo-hazard Prevention&Geo-environment Protection(No.SKLGP2012Z008,No.SKLGP2016Z015)
文摘In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
基金funded by the National Natural Science Foundation of China(No.41977226)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2016Z015)。
文摘In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this paper,the soft-sediment disturbances caused by earthquakes in the Diexi ancient dammed lake were studied based on field investigations and laboratory core observations.A two-to three-degree-of-freedom spring-type earthquake simulation vibration table was used to carry out disturbance tests on lacustrine sediments under different dynamic conditions.The results support the following conclusions:(1)The disturbance layers in the lacustrine sediments were caused by strong earthquakes in the region.(2)The characteristics of the disturbance layers are related to the seismic parameters and the degree of sediment consolidation.(3)The greater the earthquake intensity is,the greater the disturbance amplitude is;moreover,the lower the consolidation degree is,the greater the disturbance amplitude.(4)The simulation tests verify that the disturbance layers in the sediments of the Diexi ancient dammed lake correspond to strong earthquakes in the region.These results are valuable for ongoing palaeoseismic research in the region.
基金funded by the National Natural Science Foundation of China(No.41977226)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2016Z015)。
文摘The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed lake.The outburst of the ancient dammed lake would certainly have had an impact on the Chengdu Plain in the lower reaches of the Minjiang River.In this paper,on-site sampling and laboratory analysis were used to analyze the sediments of the Diexi ancient dammed lake and the Jinsha site in Chengdu Plain,and the environmental indicators of each sediment layer were tested.Through a comparative analysis of the environmental indicators in the sediments at the two locations,the following results were obtained:the palaeoclimatic and palaeoenvironmental characteristics at the two locations generally show consistent changes.The most important finding is that the types and content of the major pollen taxa at the two locations are similar.The Pinus content strongly proves that the soil layers at the Jinsha site was sourced from the upper reaches of the Minjiang River.Considering that the demise of the ancient culture at the Jinsha site occurred close in time to the outburst of the ancient dammed lake,this similarity suggests that the cultural change at the Jinsha site may have been related to the outburst of the Diexi ancient dammed lake.
基金financially supported by Project of the National Natural Science Foundation of China (Grant No.41072230)Project of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2012Z008)Project of Chengdu University of Technology Research and Innovation Team
文摘This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been the focus of active researches because they are associated with fast movement of large-scale landslides.A shaking table experiment was set up to mimic weak-intercalated rock slope under seismic loads.Excessive cavity gas pressure would be produced in weak spots upon a sudden vibration load.The drastically elevated gas pressure is believed to be responsible for the creation of cavities surrounding the tension fracture.With dissipation of the excessive cavity gas pressure,the fractures are in unbounded closed-state.This observation explains that the slope body would be split and loosened under several aftershocks,and with the expanding of the cracks,the slope failure eventually occurred.The research of the mechanism of cavity gas pressure could provide a novel insight into the formation mechanism of landslides under seismic load and has implications for the disaster prevention and control theory for the slope stability evaluation.
基金Supported by the Research Foundation from Ministry of Education of China(2009EDU309002)the National Basic Research Program of China(2012CB921704)the National Natural Science Foundation of China under Grant No 11174363.
文摘We present exact results for the electronic transport properties of graphene sheets connected to two metallic electrodes.Our results obtained by transfer-matrix methods are valid for all sheet widths and lengths.In the limit of the large width-to-length ratio relevant to recent experiments,we find a Dirac-point conductivity of 2e^(2) / (√3)h and a sub-Poissonian Fano factor of 2 - 3(√3)/π(≌) 0.346 for armchair graphene;for the zigzag geometry they are respectively 0 and 1.Our results reflect essential effects from both the topology of graphene and the electronic structure of the leads,giving a complete microscopic understanding of the unique intrinsic transport in graphene.