Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency ...Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE),the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.Therefore,a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF,furrow fertilization by manual trenching,i.e.,farmer fertilizer practice;HF:root-zone hole fertilization by point broadcast manually) at 210 kg N ha^(–1) (controlled-release:normal fertilizer=5:5),along with a 1-year in-situ microplot experiment.Maize yield,NUE and N loss were investigated under different fertilization modes.The results showed that compared with FF,HF improved the average yield and N recovery efficiency by 8.5 and 22.3%over three years,respectively.HF had a greater potential for application than FF treatment,which led to increases in dry matter accumulation,total N uptake,SPAD value and LAI.In addition,HF remarkably enhanced the accumulation of ^(15)N derived from fertilizer by 17.2%compared with FF,which in turn reduced the potential loss of^(15)N by 43.8%.HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.Hence,HF could match the N requirement of summer maize,sustain yield,improve NUE and reduce environmental N loss simultaneously.Overall,root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain,which deserves further application and investigation.展开更多
The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classif...The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.展开更多
基金financially supported by the National Key Research and Development Program of China(2017YFD0301106)。
文摘Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE),the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.Therefore,a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF,furrow fertilization by manual trenching,i.e.,farmer fertilizer practice;HF:root-zone hole fertilization by point broadcast manually) at 210 kg N ha^(–1) (controlled-release:normal fertilizer=5:5),along with a 1-year in-situ microplot experiment.Maize yield,NUE and N loss were investigated under different fertilization modes.The results showed that compared with FF,HF improved the average yield and N recovery efficiency by 8.5 and 22.3%over three years,respectively.HF had a greater potential for application than FF treatment,which led to increases in dry matter accumulation,total N uptake,SPAD value and LAI.In addition,HF remarkably enhanced the accumulation of ^(15)N derived from fertilizer by 17.2%compared with FF,which in turn reduced the potential loss of^(15)N by 43.8%.HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.Hence,HF could match the N requirement of summer maize,sustain yield,improve NUE and reduce environmental N loss simultaneously.Overall,root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain,which deserves further application and investigation.
基金supported by the National Natural Science Foundation of China(41371292)
文摘The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.