For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the freque...For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.展开更多
针对一阶惯性大时滞对象,研究了Smith预估器结合降阶线性自抗扰控制(reduced-order linear active disturbance rejection control,RLADRC)的稳定性和鲁棒性问题.根据劳斯判据得到了使系统稳定的参数选择可行域,并通过数值仿真进行验证...针对一阶惯性大时滞对象,研究了Smith预估器结合降阶线性自抗扰控制(reduced-order linear active disturbance rejection control,RLADRC)的稳定性和鲁棒性问题.根据劳斯判据得到了使系统稳定的参数选择可行域,并通过数值仿真进行验证;然后基于频域响应分析了稳定可行域内系统的相角裕度范围;最后比较了降阶自抗扰预估控制与单独降阶自抗扰控制对被控对象参数摄动的鲁棒性,并基于蒙特卡罗实验证明了降阶自抗扰预估控制的动态性能更好、鲁棒性更强.这些结论可用于Smith预估器和降阶自抗扰预估控制器参数的设计.展开更多
基金supported by the National Natural Science Foundation of China(61973175,61973172,62073177)the Key Technologies R&D Program of Tianjin(19JCZDJC32800)Tianjin Research Innovation Project for Postgraduate Students(2020YJSZXB02).
文摘For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.
文摘针对一阶惯性大时滞对象,研究了Smith预估器结合降阶线性自抗扰控制(reduced-order linear active disturbance rejection control,RLADRC)的稳定性和鲁棒性问题.根据劳斯判据得到了使系统稳定的参数选择可行域,并通过数值仿真进行验证;然后基于频域响应分析了稳定可行域内系统的相角裕度范围;最后比较了降阶自抗扰预估控制与单独降阶自抗扰控制对被控对象参数摄动的鲁棒性,并基于蒙特卡罗实验证明了降阶自抗扰预估控制的动态性能更好、鲁棒性更强.这些结论可用于Smith预估器和降阶自抗扰预估控制器参数的设计.