期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
有机胺对螺旋藻生长及固碳效果的影响 被引量:5
1
作者 王兆印 李一锋 +2 位作者 张旭 朱明龙 谭文松 《高校化学工程学报》 EI CAS CSCD 北大核心 2017年第2期377-386,共10页
采用微藻培养来降低空气中二氧化碳含量是当前研究的热点。然而,以气态CO_2为碳源的微藻培养过程中,普遍存在传质和固碳速率较低等问题。研究发现有机胺类物质如MEA(乙醇胺)、DEA(二乙醇胺)、MDEA(N-甲基-二乙醇胺)、TEA(三乙醇胺)等能... 采用微藻培养来降低空气中二氧化碳含量是当前研究的热点。然而,以气态CO_2为碳源的微藻培养过程中,普遍存在传质和固碳速率较低等问题。研究发现有机胺类物质如MEA(乙醇胺)、DEA(二乙醇胺)、MDEA(N-甲基-二乙醇胺)、TEA(三乙醇胺)等能够显著提高CO_2的气液传质速率。而针对有机胺类物质影响微藻培养及固碳效率的公开报道却并不多。研究以钝顶螺旋藻(FACHB-901)利用低含量CO_2气体为碳源的培养过程为对象,系统研究了有机胺类物质的种类(MDEA、MEA、DEA、TEA)及其添加策略对螺旋藻生物量和固碳速率的影响关系。研究结果表明,在改良的Zarrouk培养基中添加了1 mmol·L^(-1) MDEA可以使培养基中溶解性无机碳(DIC)含量达到297.4 mg·L^(-1)。而添加1mmol·L^(-1) TEA可以得到最佳的螺旋藻生物量(0.894 g·L^(-1))和固碳速率(139.3 mg·(L·d)^(-1))。同时,研究获得螺旋藻培养过程中TEA的最优添加策略为:延滞期添加5 mmol·L^(-1)、对数前期补加1 mmol·L^(-1)、对数后期补加2 mmol·L^(-1)。最终,通过TEA优化的添加策略获得了螺旋藻的生物量(1.248 g·L^(-1))和固碳速率(191.4 mg·(L·d)^(-1),比对照组分别提高了25.6%和41.2%。 展开更多
关键词 钝顶螺旋藻 有机胺类物质 优化策略 微藻培养 固碳
下载PDF
黄河下游治理方略的传承与发展 被引量:9
2
作者 王兆印 刘成 +1 位作者 何耘 肖祺 《泥沙研究》 CAS CSCD 北大核心 2021年第1期1-9,共9页
中华民族在4 000多年治理黄河的实践中,形成并传承一系列卓越的黄河治理方略,可归纳为"束水攻沙"和"宽河滞沙"两大类。结合对黄河下游河道历史变迁及水沙量演变过程的分析,浅析历史上黄河治理思想与实践的传承与发... 中华民族在4 000多年治理黄河的实践中,形成并传承一系列卓越的黄河治理方略,可归纳为"束水攻沙"和"宽河滞沙"两大类。结合对黄河下游河道历史变迁及水沙量演变过程的分析,浅析历史上黄河治理思想与实践的传承与发展。远古的大禹治水、汉代的"贾让三策"和王景治河证明了"宽河滞沙"方略的有效性。明代潘季驯、清代的靳辅和陈潢将"束水攻沙"治河方略付诸治黄实践并取得成功,丰富了治河理论。在王化云"宽河滞沙"治河主导思想的基础上不断完善和发展的人民治黄,实现了新中国成立至今70余年伏秋大汛不决口的奇迹。在黄河水沙量与过程发生了重大变化的今天,迫切需要探索黄河水沙运动和演变规律的新变化,制定新水沙条件下的黄河治理方略。 展开更多
关键词 黄河 治理方略 束水攻沙 宽河滞沙
下载PDF
黄河下游治理方略的历史回顾 被引量:5
3
作者 刘成 王兆印 +1 位作者 何耘 肖祺 《泥沙研究》 CSCD 北大核心 2020年第6期67-73,共7页
黄河治理是中国历代事关安民兴邦的大事。在中华民族治理黄河4000多年的历史进程中,中国人民在实践中不断提高治河技术,提出过各种治黄方略,形成了一系列卓越的治河思想。基于广泛的文献调研和综述,按历史时期顺序回顾了中国历代黄河下... 黄河治理是中国历代事关安民兴邦的大事。在中华民族治理黄河4000多年的历史进程中,中国人民在实践中不断提高治河技术,提出过各种治黄方略,形成了一系列卓越的治河思想。基于广泛的文献调研和综述,按历史时期顺序回顾了中国历代黄河下游治理的主要方略。从简单的水来土挡到筑堤分流;从单纯的治水防洪到治水与治沙相结合;从下游防洪走向了全河流治理。治理方略不断继承与发展。长期实践探索形成的黄河下游治理方略是中国历代水利工作者智慧的结晶,对现代黄河的治理和开发具有十分重要的传承与启示价值。 展开更多
关键词 黄河 治理方略 防洪 拦沙
下载PDF
Experimental Study of the Interaction between Building Clusters and Flash Floods 被引量:3
4
作者 DU Jun HE Xiao-yan +2 位作者 wang zhao-yin ZHANG Chen-di LI Wen-xin 《Journal of Mountain Science》 SCIE CSCD 2015年第5期1334-1344,共11页
In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process ... In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods. 展开更多
关键词 Flash floods Building clusters Settlement's distribution Disaster process Fieldmodel experiment
下载PDF
Quantitative evaluation of eco-geotechnical measures for debris flow mitigation by improved vegetation-erosion model
5
作者 LYU Li-qun XU Meng-zhen +1 位作者 ZHOU Guan-yu wang zhao-yin 《Journal of Mountain Science》 SCIE CSCD 2022年第7期2015-2026,共12页
Eco-geotechnical measures for debris flow mitigation and control have attracted wide attention,but the mitigation effect is lack of quantitative evaluation of coordinated measures.In order to evaluate the debris flow ... Eco-geotechnical measures for debris flow mitigation and control have attracted wide attention,but the mitigation effect is lack of quantitative evaluation of coordinated measures.In order to evaluate the debris flow mitigation effect in the combinations of geotechnical engineering and ecological engineering,this study investigated the different trends of debris flows behaviour based on the sediment deposition on the gully bed and the loose material on the hillslope.Besides,this research proposed a new model involving vegetation coverage,source gravity energy and debris flow volume based on vegetation-erosion model.The new model validated that the debris flow volume was proportional to the gravity energy of gravel and rock fragments on the hillslope and inversely proportional to the vegetation coverage in a dry-hot valley setting.Furthermore,a typical area in the valley of the Xiaojiang River in Yunnan Province,China was quantified with the new model.The results showed that under different gravity energy conditions,the implementation order of check dam construction and afforestation was important for debris flow mitigation. 展开更多
关键词 Debris flow Vegetation coverage Source energy Incision and deposition AFFORESTATION Check dam Jiangjia Gully
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部