期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
长株潭城市群PM_(2.5)和O_(3)浓度时空分布特征及影响因素分析 被引量:11
1
作者 刘贤赵 张国桥 +3 位作者 杨文涛 吴业荣 李朝奎 任毅 《环境科学》 EI CAS CSCD 北大核心 2022年第12期5354-5366,共13页
基于2015~2019年长株潭城市群PM_(2.5)和O_(3)遥感浓度数据,利用空间自相关指数和地理加权回归(GWR)等方法探究PM_(2.5)和O_(3)浓度的时空分布特征及相关因素对其影响强度.结果表明:①PM_(2.5)浓度整体呈现出冬季和春季高,夏季和秋季低... 基于2015~2019年长株潭城市群PM_(2.5)和O_(3)遥感浓度数据,利用空间自相关指数和地理加权回归(GWR)等方法探究PM_(2.5)和O_(3)浓度的时空分布特征及相关因素对其影响强度.结果表明:①PM_(2.5)浓度整体呈现出冬季和春季高,夏季和秋季低的"U"型特征,而O_(3)浓度则表现为夏季和秋季高,冬季和春季低的"M"型特征,PM_(2.5)与O_(3)年均浓度高低排序为:长沙市>湘潭市>株洲市.②PM_(2.5)与O_(3)浓度在夏季呈现正相关,秋冬季为负相关,且具有显著的空间集聚特征,O_(3)浓度高-高集聚区的面积呈现逐年增加的趋势.③GWR结果显示:夜间灯光强度和人口密度都对PM_(2.5)与O_(3)具有正相关效应,其中,植被指数(NDVI)、风速和温度对PM_(2.5)浓度的影响最为显著,而风速和温度对O_(3)影响强度更为突出,不同因素对PM_(2.5)和O_(3)浓度影响具有显著的空间异质性. 展开更多
关键词 长株潭城市群 时空分布 地理加权回归(GWR) 空间自相关 空间异质性
原文传递
Clustering analysis of telecommunication customers 被引量:2
2
作者 REN Hong ZHENG Yan wu ye-rong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2009年第2期114-116,128,共4页
In this article, a clustering method based on genetic algorithm (GA) for telecommunication customer subdivision is presented. First, the features of telecommunication customers (such as the calling behavior and con... In this article, a clustering method based on genetic algorithm (GA) for telecommunication customer subdivision is presented. First, the features of telecommunication customers (such as the calling behavior and consuming behavior) are extracted. Second, the similarities between the multidimensional feature vectors of telecommunication customers are computed and mapped as the distance between samples on a two-dimensional plane. Finally, the distances are adjusted to approximate the similarities gradually by GA. One advantage of this method is the independent distribution of the sample space. The experiments demonstrate the feasibility of the proposed method. 展开更多
关键词 genetic algorithm similarity matrix customer subdivision
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部