期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process 被引量:4
1
作者 wan-song li Hong-ye Gao +3 位作者 Zhong-yi li Hideharu Nakashima Satoshi Hata Wen-huai Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期303-313,共11页
We present a study concerning Fe-0. 176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microsco... We present a study concerning Fe-0. 176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demon- strate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstrucmre, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (-300 nm in width), film-like retained austenite (80-120 nm in width), and ul- tra-fine film-like retained austenite (30-40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel. 展开更多
关键词 low-carbon steel QUENCHING partitioning retained austenite rnicrostructure mechanical properties
下载PDF
Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization 被引量:3
2
作者 wan-song li Hong-ye Gao +2 位作者 Hideharu Nakashima Satoshi Hata Wen-huai Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期906-919,共14页
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A... In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected. 展开更多
关键词 low-carbon steel quenching partitioning microstructure mechanical properties interfaces
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部