The sulfate ions immobilization behavior of calcined layered double hydroxides(CLDHs) in the hardened cement paste was investigated. The experimental results show that the sulfate ions in cement paste are immobilized ...The sulfate ions immobilization behavior of calcined layered double hydroxides(CLDHs) in the hardened cement paste was investigated. The experimental results show that the sulfate ions in cement paste are immobilized by CLDHs to reconstruct the layered structure and aggregate around CLDHs. The immobilization amount of sulfate ions by CLDHs reaches 4.74×10^-3 mol/g, while the increasing amount indicates non-linear relation with the addition of CLDHs. The incorporation of CLDHs decreases the amount of ettringite formed to limit the expansion of cement paste, which decays the sulfate reaction to enhance the sulfate resistance of concrete.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51508191,11502081,51502272,and 51608409)the Foundation from MWR Center for Levee Safety and Disease Prevention Research,State Key Laboratory of Silicates Materials for Architectures of Wuhan University of Technology(SYSJJ2014-3,SYSJJ2018-15)+1 种基金the Foundation from Engineering Research Center of Nano-Geomaterials of Ministry of Education,China University of Geosciences(NGM2018KF011)the Fundamental Research Funds for the Central Universities,China University of Geosciences
文摘The sulfate ions immobilization behavior of calcined layered double hydroxides(CLDHs) in the hardened cement paste was investigated. The experimental results show that the sulfate ions in cement paste are immobilized by CLDHs to reconstruct the layered structure and aggregate around CLDHs. The immobilization amount of sulfate ions by CLDHs reaches 4.74×10^-3 mol/g, while the increasing amount indicates non-linear relation with the addition of CLDHs. The incorporation of CLDHs decreases the amount of ettringite formed to limit the expansion of cement paste, which decays the sulfate reaction to enhance the sulfate resistance of concrete.