The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously pen...The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.展开更多
Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qit...Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qitianling area, Southern Hunan Province, China, were quantitatively calculated and appraised by fractal and multifractal methods to evaluate the relation between fault structures and ore-prospecting potential. The results show that the lengths of faults can be modeled as multifractals. Multifractal spectra evidently reflect the characteristics of the scaling of fault structures. The box- counting dimension value (D) of fault structures is equal to 1.656, as indicates complexity of the spatial distribution of faults and favorable structural conditions for the formation of ore deposits. Moreover, the D values of sub-regions were calculated and isopleths of their fractal dimension values were plotted accordingly. Overlay analyses of isopleths of fractal dimension values and distributions of known ore deposits show that areas with the larger fractal dimension values of fault structures have more ore deposits. This spatial coupling relationship between D values and ore deposits can be used to forecast and explore other ore deposits. On the basis of complexity theory for ore-forming systems, three exploration targets with high D values were delineated as prospective ore deposits.展开更多
Recently,methane seepage related to the dissociation of natural gas hydrates has attracted much attention,which has a significant impact on the study of the global carbon and nitrogen cycles.Based on the detailed geoc...Recently,methane seepage related to the dissociation of natural gas hydrates has attracted much attention,which has a significant impact on the study of the global carbon and nitrogen cycles.Based on the detailed geochemical analyses of sediments(core Q6)from the Qiongdongnan Basin,South China Sea,three methane seepage activities were identified and the exact horizons of anaerobic oxidation of methane(AOM)were defined.Furthermore,organic carbon isotopic(δ^(13)C_(TOC))levels ranged from−23.6‰–−20.6‰PDB;nitrogen isotopes(δ^(15)N_(TN))of the same sedimentary samples ranged from 1.8‰–5.3‰.We also found obvious simultaneous negative excursions of organic carbon isotopes(δ^(13)C_(TOC))and nitrogen isotopes(δ^(15)N_(TN))in the horizons of methane seepages.Compared with the normal sediments,their maximum negative excursions were 2.6‰and 2.5‰,respectively.We discuss in detail the various characteristics ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediments and their coupling responses to methane seepage activities.We believe that the methane seepage events changed the evolution trajectory ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediment records,which resulted in the simultaneous negative excursions.This phenomenon is of great significance to reveal the historical dissociation of natural gas hydrates and their influence on the deep-sea carbon and nitrogen pool.展开更多
基金supported by the 2022 National Natural Science Foundation of China(No.62277002)the National Key Research and Development Program of China(2022YFC3303500).
文摘The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.
基金financially supported by the China Geological Survey Project(Grant No.1212011121101)
文摘Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qitianling area, Southern Hunan Province, China, were quantitatively calculated and appraised by fractal and multifractal methods to evaluate the relation between fault structures and ore-prospecting potential. The results show that the lengths of faults can be modeled as multifractals. Multifractal spectra evidently reflect the characteristics of the scaling of fault structures. The box- counting dimension value (D) of fault structures is equal to 1.656, as indicates complexity of the spatial distribution of faults and favorable structural conditions for the formation of ore deposits. Moreover, the D values of sub-regions were calculated and isopleths of their fractal dimension values were plotted accordingly. Overlay analyses of isopleths of fractal dimension values and distributions of known ore deposits show that areas with the larger fractal dimension values of fault structures have more ore deposits. This spatial coupling relationship between D values and ore deposits can be used to forecast and explore other ore deposits. On the basis of complexity theory for ore-forming systems, three exploration targets with high D values were delineated as prospective ore deposits.
基金supported by the National Key R&D Program of China(No.2017YFC0306703)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019 ZD0201).
文摘Recently,methane seepage related to the dissociation of natural gas hydrates has attracted much attention,which has a significant impact on the study of the global carbon and nitrogen cycles.Based on the detailed geochemical analyses of sediments(core Q6)from the Qiongdongnan Basin,South China Sea,three methane seepage activities were identified and the exact horizons of anaerobic oxidation of methane(AOM)were defined.Furthermore,organic carbon isotopic(δ^(13)C_(TOC))levels ranged from−23.6‰–−20.6‰PDB;nitrogen isotopes(δ^(15)N_(TN))of the same sedimentary samples ranged from 1.8‰–5.3‰.We also found obvious simultaneous negative excursions of organic carbon isotopes(δ^(13)C_(TOC))and nitrogen isotopes(δ^(15)N_(TN))in the horizons of methane seepages.Compared with the normal sediments,their maximum negative excursions were 2.6‰and 2.5‰,respectively.We discuss in detail the various characteristics ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediments and their coupling responses to methane seepage activities.We believe that the methane seepage events changed the evolution trajectory ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediment records,which resulted in the simultaneous negative excursions.This phenomenon is of great significance to reveal the historical dissociation of natural gas hydrates and their influence on the deep-sea carbon and nitrogen pool.