Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
Dual-atom catalysts(DACs)represent an exciting advance in the field of heterogeneous catalysis.They not only retain the beneficial characteristics of single-atom catalysts(SACs),but they also harness the synergistic e...Dual-atom catalysts(DACs)represent an exciting advance in the field of heterogeneous catalysis.They not only retain the beneficial characteristics of single-atom catalysts(SACs),but they also harness the synergistic effects that arise from the proximity of neighboring single-metal atoms.Nevertheless,the fabrication of heteronuclear dual-atom metals positioned adjacently for use in photocatalysis remains a significant challenge.Herein,we report the atomically dispersed adjacent Pt-Ag dual-atom pairs on carbon nitride(Pt1Ag1-a/CN)by a facile hydrogen-bonding assembly strategy via pyrolysis of the hydrogen-bonding supramolecule containing melamine-Ag and cyanuric acid-Pt complexes on carbon nitride(CN),through which the light absorption depressed by deposited carbonaceous materials during the preparation of dual-atom metals via a traditional method like the pyrolysis of the metal-organic framework.Thanks to the synergism achieved by the bonding interaction of adjacent Pt and Ag single-atom pairs,the developed Pt1Ag1-a/CN with 0.21%Pt loading shows a high turnover frequency(TOF)of 1115 h^(−1)with a H_(2)evolution rate(HER)of 12,000μmol g^(−1)h^(−1)for photocatalytic water splitting under simulated solar light irradiation(325 h^(−1)of TOF with 3480μmol g^(−1)h^(−1)of HER under visible light irradiation).This strategy outperforms the previously reported SACs on CN-based semiconductors.Density functional theory(DFT)calculations demonstrate that the adjacent Ag atom acts as a coordination atom to effectively regulate the electronic structure of the Pt atom and thus brings the d-band center of Pt close to the Fermi energy level,which is beneficial for the H_(2)production.This work presents a facile and general strategy for designing diverse adjacent diatomic cocatalysts in photocatalysis without depressing light absorption by the deposited carbon during the DAC preparation via previously reported methods.展开更多
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
基金supported by the National Natural Science Foundation of China(grant no.21978030)the National Key R&D Program of China(grant no.2021YFA1502804)the Chinese Ministry of Education via the Program for New Century Excellent Talents in Universities(grant no.NCET-12-0079).
文摘Dual-atom catalysts(DACs)represent an exciting advance in the field of heterogeneous catalysis.They not only retain the beneficial characteristics of single-atom catalysts(SACs),but they also harness the synergistic effects that arise from the proximity of neighboring single-metal atoms.Nevertheless,the fabrication of heteronuclear dual-atom metals positioned adjacently for use in photocatalysis remains a significant challenge.Herein,we report the atomically dispersed adjacent Pt-Ag dual-atom pairs on carbon nitride(Pt1Ag1-a/CN)by a facile hydrogen-bonding assembly strategy via pyrolysis of the hydrogen-bonding supramolecule containing melamine-Ag and cyanuric acid-Pt complexes on carbon nitride(CN),through which the light absorption depressed by deposited carbonaceous materials during the preparation of dual-atom metals via a traditional method like the pyrolysis of the metal-organic framework.Thanks to the synergism achieved by the bonding interaction of adjacent Pt and Ag single-atom pairs,the developed Pt1Ag1-a/CN with 0.21%Pt loading shows a high turnover frequency(TOF)of 1115 h^(−1)with a H_(2)evolution rate(HER)of 12,000μmol g^(−1)h^(−1)for photocatalytic water splitting under simulated solar light irradiation(325 h^(−1)of TOF with 3480μmol g^(−1)h^(−1)of HER under visible light irradiation).This strategy outperforms the previously reported SACs on CN-based semiconductors.Density functional theory(DFT)calculations demonstrate that the adjacent Ag atom acts as a coordination atom to effectively regulate the electronic structure of the Pt atom and thus brings the d-band center of Pt close to the Fermi energy level,which is beneficial for the H_(2)production.This work presents a facile and general strategy for designing diverse adjacent diatomic cocatalysts in photocatalysis without depressing light absorption by the deposited carbon during the DAC preparation via previously reported methods.