Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution P...In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.展开更多
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
基金supported by the National Natural Science Foundation of China(No.52004120).
文摘In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.